Optimal planning of trip and round trip cycle time on an urban route
DOI:
https://doi.org/10.15587/2312-8372.2018.129039Keywords:
urban public transport, waiting time, trip duration, generalized expensesAbstract
The object of research is the public urban passenger transport route. One of the most problematic places in the organization of transportation on a fixed city route is the establishment of the planned trip duration and/or round trip. Difficulties arise because the trip duration on a city route is usually a random variable, which must be taken into account when establishing its planned values, used later when scheduling traffic. This, on the one hand, makes it possible to increase the efficiency of the use of route vehicles by reducing their unproductive outages, and on the other hand, to improve the quality of passenger service by reducing the waiting time for the last transport at stops.
During the research, the method of stochastic optimization of the planned trip duration is used. This makes it possible to find a compromise in terms of value between the efficiency of using route vehicles and the quality of passenger service. A feature of the proposed optimization method is the consideration in the generalized costs of unproductive idle times of route vehicles, the lost profit of the transport operator and the cost of transport time for passengers.
The application of the developed method for the conditions of the trolleybus route No. 14 of the city of Zaporizhzhia (Ukraine) allows, in comparison with the existing planned indicators, to reduce the total costs by 12 %.
Now the technical possibilities of collection, accumulation and processing of empirical information on the conditions for performing transportation on urban routes using satellite systems of global GPS positioning have significantly expanded. In such conditions, using the developed method, it is possible to take operational account of the operational and socio-economic factors in the planning of passenger traffic in which these transportations are carried out.
References
- Ceder, A. (2007). Public transit planning and operation: theory, modeling and practice. Oxford: Elsevier. Butterworth-Heinemann, 626.
- Spirin, I. V. (2004). Perevozki passazhirov gorodskim transportom. Moscow: IKTS «Akademkniga», 413.
- Kuzkin, О. F. (2015). Service regularity investigation of fixed-route taxi during on-peak hours. Eastern-European Journal of Enterprise Technologies, 5 (3 (77)), 14–22. doi:10.15587/1729-4061.2015.51361
- Babushkin, H. F., Kuzkin, O. F., Yudin, V. P. (2010). Transportno-ekolohichni problemy mista Zaporizhzhia. Novi materialy i tekhnolohii v metalurhii ta mashynobuduvanni, 1, 144–146.
- Artynov, A. P., Skaletskiy, V. V. (1981). Avtomatizatsiya protsessov planirovaniya i upravleniya transportnymi sistemami. Moscow: Nauka, 280.
- Larin, O. N. (2005). Organizatsiya passazhirskikh perevozok. Chelyabinsk: YUUrGU, 104.
- Efremov, I. S., Kobozev, V. A., Yudin, V. A. (1980). Teoriya gorodskikh passazhirskikh perevozok. Moscow: Vysshaya shkola, 535.
- Ryusk, P., Vandehey, M., Elefteriadou, L. et al. (2011). Highway capacity manual 2010. TR News, 273. Washington D.C.: Transportation Research Board, National Research Council, 45–48.
- Islam, M. K. (2010). Reliability Analysis of Public Transit Systems Using Stochastic Simulation. World Transit Research. Canberra, 13.
- Transit Capacity and Quality of Service Manual: TRCP Report 165. (2013). Washington D.C.: Transportation Research Board, 685. doi:10.17226/24766
- Ibarra-Rojas, O. J., Delgado, F., Giesen, R., Munoz, J. C. (2015). Planning, operation, and control of bus transport systems: A literature review. Transportation Research Part B: Methodological, 77, 38–75. doi:10.1016/j.trb.2015.03.002
- Diab, E. I., El-Geneidy, A. M. (2013). Variation in bus transit service: understanding the impacts of various improvement strategies on transit service reliability. Public Transport, 4 (3), 209–231. doi:10.1007/s12469-013-0061-0
- El-Geneidy, A. M., Horning, J., Krizek, K. J. (2011). Analyzing transit service reliability using detailed data from automatic vehicular locator systems. Journal of Advanced Transportation, 45 (1), 66–79. doi:10.1002/atr.134
- Davidich, Yu. A., Kalyuzhnyy, M. V. (2012). Normirovanie skorosti dvizheniya gorodskogo passazhirskogo transporta s uchetom kharakteristik marshruta. Vіstі avtomobіl'no-dorozhn'ogo іnstitutu, 1 (14), 11–17.
- El-Geneidy, A., Hourdos, J., Horning, J. (2009). Bus Transit Service Planning and Operations in a Competitive Environment. Journal of Public Transportation, 12 (3), 39–59. doi:10.5038/2375-0901.12.3.3
- Wu, Y., Tang, J., Gong, J. (2015). Optimization Model for Single Bus Route Schedule Design Problem with Stochastic Travel Time. Journal of Northeastern University: Natural Science, 36 (10), 1393–1397. doi:10.3969/j.issn.1005-3026.2015.10.006
- Gong, X., Guo, X., Dou, X., Lu, L. (2015). Bus Travel Time Deviation Analysis Using Automatic Vehicle Location Data and Structural Equation Modeling. Mathematical Problems in Engineering, 2015, 1–9. doi:10.1155/2015/410234
- Mazloumi, E., Currie, G., Rose, G. (2010). Using GPS Data to Gain Insight into Public Transport Travel Time Variability. Journal of Transportation Engineering, 136 (7), 623–631. doi:10.1061/(asce)te.1943-5436.0000126
- Uno, N., Kurauchi, F., Tamura, H., Iida, Y. (2009). Using Bus Probe Data for Analysis of Travel Time Variability. Journal of Intelligent Transportation Systems, 13 (1), 2–15. doi:10.1080/15472450802644439
- Qu, X., Oh, E., Weng, J., Jin, S. (2014). Bus travel time reliability analysis: a case study. Proceedings of the Institution of Civil Engineers – Transport, 167 (3), 178–184. doi:10.1680/tran.13.00009
- Acosta, C., Gallagher, S., Laberge, M., Townsend, M. (2011). Transit System Analysis and Optimization in Montgomery County. Worcester: Worcester Polytechnic Institute, 86.
- Improving Bus Transit On-Time Performance through the Use of AVL Data (final). (2014). Pascal Systems Inc. Latham, 28.
- Sahoo, P. (2013). Probability and mathematical statistics. Louisville: University of Louisville, 686.
- Kobzar, A. I. (2006). Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnykh rabotnikov. Moscow: FIZMATLIT, 816.
- Chetchuev, M. V., Kostenko, V. V., Fedorov, V. P., Homich, D. I. (2014). Faktor skorosti kak ekonomicheskaya kategoriya passazhirskikh transportnykh sistem v gorodskikh aglomeratsiyakh. Magnitolevitatsionnye transportnye sistemy i tekhnologii. Saint Petersburg, 205–211.
- Mackie, P. J., Jara-Diaz, S., Fowkes, A. S. (2001). The value of travel time savings in evaluation. Transportation Research Part E: Logistics and Transportation Review, 37 (2-3), 91–106. doi:10.1016/s1366-5545(00)00013-2
- Holovne upravlinnia statystyky v Zaporizkii oblasti. Available at: http://www.zp.ukrstat.gov.ua/. Last accessed: 08.03.2018.
- Zhao, J., Dessouky, M., Bukkapatnam, S. (2006). Optimal Slack Time for Schedule-Based Transit Operations. Transportation Science, 40 (4), 529–539. doi:10.1287/trsc.1060.0170
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Olexiy Kuzkin
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.