Development of data structure of information technology of group spectrum-current diagnosis of induction motors

Authors

DOI:

https://doi.org/10.15587/2312-8372.2014.25271

Keywords:

database, knowledge base, induction motor, monitoring, information technology

Abstract

For monitoring the current status of electrical equipment, the information technology of a group spectrum-current diagnosis of induction motors is proposed. The proposed technology is based on the process of obtaining information about the objects under investigation by analyzing the current spectrum of consuming electrical network. The process of obtaining and further processing of data is considered in the paper. The structure of the database and knowledge base of an expert system as a part of a decision support system for monitoring the current status of induction motors is given. As a result of the conducted studies, the analysis of information processes in the decision support system (DSS) of the information technology of the group spectrum-current diagnosis of induction motors (IM) is made. As a result, the algorithm of the database management system operation (DBMS) for sustainable recording, storing and processing of the necessary data is formed. The structure of the database and knowledge base is developed. The obtained structures of the database and knowledge base can be used in the implementation of systems for monitoring the current status of induction motors based on the spectrum-current diagnosis.

Author Biographies

Денис Іванович Кузнєцов, Kryviy Rih National University, Partsjezda 11, Kryviy Rih, Ukraine, 50027

Assistent

Department of computer systems and networks

Андрій Іванович Купін, Kryviy Rih National University, Partsjezda 11, Kryviy Rih, Ukraine, 50027

Professor

Department of computer systems and networks

References

  1. Петухов, В. С. Диагностика состояния электродвигателей на основе спектрального анализа потребляемого тока [Текст]/ В. С. Петухов, В. А. Соколов// Новости Электротехники. – 2005. – № 1(31). – С. 23-25.
  2. Кравченко, В. М. Техническое диагностирование механического оборудования [Текст]: учеб./ В. М. Кравченко, В. А. Сидоров. – Донецк: Витязь, 2006. – 256 с.
  3. Кузнєцов, Д. І. Експертна система розпізнавання дефектів електрообладнання [Текст]: матеріали ІІІ всеук. наук.-техн. конф., 25 вересня 2012р., Донецьк/ Д. І. Кузнєцов. – Донецьк: ДонНТУ, 2012. – 185 с.
  4. Кузнецов, Д. И. Кластерная СППР системы мониторинга текущего состояния электродвигателя [Текст]/ Д. И. Кузнецов // Вестник Курганского государственного университета. – 2013. – №2(29). – С. 84-86.
  5. Didier, G. Fault detection of broken rotor bars in induction motor using a global fault Index [Text]/ G. Didier, E. Ternisien, O. Caspary// IEEE Transactions on Industry Applications. – 2006. – Vol. 42. – P. 79-88.
  6. Said, M. Detection of broken bars in induction motors using an extended Kalman filter for rotor resistance sensor less estimation [Text]/ M. Said, V. Benbouzid, A. Benchaib// IEEE Transactions on Energy Conversion. – 2001. – Vol. 15. – P. 66-70.
  7. Bernard, S. Compensation of Harmonic Currents Generated By Computers Utilizing an Innovative Active Harmonic Conditioner [Text]/ S. Bernard, G. Trochain// MGE UPS Systems. – 2002. – Vol. 18. – P. 19-22.
  8. Meiton, J. Understanding The New SQL [Text]/ J. Meiton, A. Simon. – A Complete Guide, 2003. – P. 135-140.
  9. Codd, E. Extending the Database Relation Model to Capture More Meaning [Text]/ E. Codd// ACM Transaction on Database Systems. – 1973. – Vol. 4. – P. 397-434.
  10. Grosso, W. Java RMI: Designing & Building Distributed Applications [Text]/ W. Grosso. – UCS, 2002. – P. 530-536.
  11. Petukhov, V. S., Sokolov, V. A. (2005). Diahnostika sostoianiia elektrodvihatelei na osnove spektral'noho analiza potrebliaemoho toka. Novosti Elektrotekhniki, № 1(31), 23-25.
  12. Kravchenko, V. M., Sidorov, V. A. (2006). Tekhnicheskoe diahnostirovanie mekhanicheskoho oborudovaniia. Donetsk: Vitiaz', 256.
  13. Kuznetsov, D. І. (2012). Ekspertna sistema rozpіznavannia defektіv elektroobladnannia. Materіali ІІІ vseuk. nauk.-tekhn. konf., 25 veresnia 2012r., Donets'k, 185.
  14. Kuznetsov, D. І. (2013). Cluster DSS system for monitoring the current state of electric motors. Bulletin of Kurgan State University, №2(29), 84-86.
  15. Didier, G., Ternisien, E., Caspary, O. (2006). Fault detection of broken rotor bars in induction motor using a global fault Index. IEEE Transactions on Industry Applications, Vol. 42, 79-88.
  16. Said, M., Benbouzid, V., Benchaib, A. (2001). Detection of broken bars in induction motors using an extended Kalman filter for rotor resistance sensor less estimation. IEEE Transactions on Energy Conversion, Vol. 15, 66-70.
  17. Bernard, S., Trochain, G. (2002). Compensation of Harmonic Currents Generated By Computers Utilizing an Innovative Active Harmonic Conditioner. MGE UPS Systems, Vol. 18, 19-22.
  18. Meiton, J., Simon, A. (2003). Understanding The New SQL. A Complete Guide, 135-140.
  19. Codd, E. (1973). Extending the Database Relation Model to Capture More Meaning. ACM Transaction on Database Systems, Vol. 4, 397-434.
  20. Grosso, W. (2002). Java RMI: Designing & Building Distributed Applications. UCS, 530-536.

Published

2014-05-29

How to Cite

Кузнєцов, Д. І., & Купін, А. І. (2014). Development of data structure of information technology of group spectrum-current diagnosis of induction motors. Technology Audit and Production Reserves, 3(1(17), 4–8. https://doi.org/10.15587/2312-8372.2014.25271

Issue

Section

Technology audit