Development of approximate analytical method for modeling transient thermal processes using S-functions

Authors

  • Анатолий Павлович Слесаренко A. N. Podgorny Institute for Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, 2/10, Kharkov, 61046, Ukraine https://orcid.org/0000-0002-4860-8512
  • Ирина Владиславовна Ена V. N. Karazin Kharkiv National University, Sq. Liberty, 4, Kharkov, Ukraine, 61022, Ukraine https://orcid.org/0000-0001-9935-8034

DOI:

https://doi.org/10.15587/2312-8372.2014.26295

Keywords:

mathematical modeling, S-functions, thermal processes, boundary conditions

Abstract

A new methodology for mathematical modeling of transient thermal processes in structural components is proposed. It is based on the joint application of the structural method, the Bubnov-Galerkin method and S-functions to solving heat conduction problems with unsteady boundary conditions of the third kind. The analytic structures for solving these problems, accurately satisfying unsteady boundary conditions at any given time dependence of the heat transfer coefficient and ambient temperature are constructed. These qualitative features of the analytic structures for solving heat conduction problems have allowed first proposed solution methods to obtain approximate analytical solutions of these problems.

Using the Bubnov-Galerkin method has allowed to reduce solving heat conduction problems with unsteady boundary conditions to solving the system of ordinary differential equations with respect to the unknown time-dependent coefficients of problem solution structures. Herewith, in the given system of ordinary differential equations, known time-dependent coefficients contain the heat transfer coefficients and the ambient temperature in analytical representation at their any given time dependence. This first allows one-dimensional unsteady heat conduction problems (infinite plates, cylinder, hollow sphere) to obtain an approximate analytical solution of unsteady heat conduction problems for those options of time dependence of the heat transfer coefficient and the ambient temperature, for which the operating method is not applicable.

Author Biographies

Анатолий Павлович Слесаренко, A. N. Podgorny Institute for Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, 2/10, Kharkov, 61046

Doctor of Physics and Mathematics, Professor, Senior Fellow, winner of the State Prize of Ukraine

Department of modeling and identification of thermal processes 

 

Ирина Владиславовна Ена, V. N. Karazin Kharkiv National University, Sq. Liberty, 4, Kharkov, Ukraine, 61022

Department of Solid State Physics 

References

  1. In: Subhash, L. Shindé, Jitendra, S. Goela. (2006). High thermal conductivity materials. New York: Springer, 271. doi:10.1007/b106785.
  2. Marazzi, A., Joss, J., Randriamiharisoa, A. (1993). Algorithms, routines, and S functions for robust statistics : the FORTRAN library ROBETH with an interface to S-PLUS. Pacific Grove, Calif.: Wadsworth & Brooks/Cole Advanced Books & Software, 440.
  3. Hodunov, S. K., Riabenkyi, V. S. (1973). Raznostnye skhemy: vvedenye v teoryiu. M.: Nauka, 400.
  4. Samarskyy, А., Vabyshchevych, Р. (2003). Computational Heat Transfer. Moscow: URSS Editornal, 784.
  5. Annaratone, D. (2011). Transient Heat Transfer. SpringerBriefs in Applied Sciences and Technology. Springer Berlin Heidelberg, V. 3,1–46. doi:10.1007/978-3-642-19777-2_1.
  6. Slesarenko, A. Р., Kobrynovych, Yu. O. (2010). Numerically-analytical modelling of thermal processes under non-stationary boundary conditions. Eastern-European Journal Of Enterprise Technologies, 4(6(46)), 7-10.
  7. Slesarenko, A. Р. (2012). S-function in the inverse problems of analytical geometry and in modeling of heat processes. Eastern-European Journal Of Enterprise Technologies, 3(4(51)), 41-46.
  8. Slesarenko, A. P. (2012). S-function in inverse problems of differential geometry and management formation of forms. Eastern-European Journal Of Enterprise Technologies, 1(4(55)), 4-10.
  9. Slesarenko, A. P. (2012). S-functions in the conservative structures construction for geometric inverse boundary value problems solving. Eastern-European Journal Of Enterprise Technologies, 2(4(56)), 60-66.
  10. Dytkyn, V. A., Prudnykov, A. P. (1974). Yntehralnye preobrazovanyia y operatsyonnoe yschyslenye. M.: Nauka, 524.
  11. Vanychev, A. P. (1946). Pryblyzhennyi metod reshenyia zadach teploprovodnosty pry peremennykh konstantakh. Yzv. AN SSSR. Otdelenye tekhn. nauk., №12, 1767-1774.

Published

2014-07-14

How to Cite

Слесаренко, А. П., & Ена, И. В. (2014). Development of approximate analytical method for modeling transient thermal processes using S-functions. Technology Audit and Production Reserves, 4(1(18), 18–23. https://doi.org/10.15587/2312-8372.2014.26295

Issue

Section

Technology audit