An analysis of knowledge representation methods in intelligent decision-making support systems

Authors

DOI:

https://doi.org/10.15587/2706-5448.2023.289747

Keywords:

decision making support systems, efficiency, cognitive models, global and local optimization

Abstract

The scientific task, which is solved in the research, is the analysis of knowledge representation methods in intelligent decision-making support systems. The problem is explained by the fact that the form of knowledge representation significantly affects the characteristics and properties of the system. In order to operate all kinds of knowledge from the real world with the help of a computer, it is necessary to carry out their simulation. In such cases, it is necessary to distinguish knowledge intended for processing by computational devices from knowledge used by humans. In addition, with a large amount of knowledge, it is desirable to simplify the sequential management of individual elements of knowledge. A homogeneous representation leads to a simplification of the logic management mechanism and a simplification of knowledge management. The research is aimed at the analysis of knowledge representation methods in intelligent decision-making support systems. Currently, many models of knowledge representation have been developed. The main models include: logical models; frame model; network models (or semantic networks); production models. Therefore, the object of research is the intelligent decision-making support system. The subject of research is an intelligent decision-making support system.

The following is set:

– the methods (models, approaches) presented in the research for presenting knowledge in intelligent decision-making support systems in a canonical form are not advisable to use for a number of objective reasons given in subsection 3.1 of the research;

– it is necessary to develop new (improvement of existing) representations of knowledge in intelligent decision-making support systems, which will have the advantages of these approaches without their disadvantages.

Further improvement of these approaches to reduce the number of shortcomings and limitations of their application should be considered as the direction of further research.

Author Biographies

Oleksandr Gaman, Kruty Heroes Military Institute of Telecommunications and Informatization

Postgraduate Student

Scientific and Organizational Department

Andrii Shyshatskyi, National Aviation University

PhD, Senior Researcher, Associate Professor

Department of Computerized Management Systems

Vitalina Babenko, Kharkiv National Automobile and Highway University

Doctor of Economic Sciences, Professor, Head of Department

Department of Computer Systems

Tetiana Pluhina, Kharkiv National Automobile and Highway University

PhD, Associate Professor

Department of Automation and Computer-Integrated Technologies

Larisa Degtyareva, Poltava State Agrarian University

PhD, Associate Professor

Department of Information Systems and Technologies

Olena Shaposhnikova, Kharkiv National Automobile and Highway University

PhD, Associate Professor

Department of Computer Systems

Sergii Pronin, Kharkiv National Automobile and Highway University

PhD, Associate Professor

Department of Computer Systems

Nadiia Protas, Poltava State Agrarian University

PhD, Associate Professor

Department of Information Systems and Technologies

Tetiana Stasiuk, Military Institute of Telecommunications and Information Technologies named after Heroes of Kruty

Lecturer

Cyclic Commission of General Education Disciplines

Sergeant Military College

Inna Kutsenko, Research Institute of Military Intelligence

Researcher

Scientific and Methodological Center

References

  1. Shevchenko, A. I., Baranovskyi, S. V., Bilokobylskyi, O. V., Bodianskyi, Ye. V., Bomba, A. Ya. et al.; Shevchenko, A. I. (Ed.) (2023). Stratehiia rozvytku shtuchnoho intelektu v Ukraini. Kyiv: IPShI, 305.
  2. Shyshatskyi, A. V., Bashkyrov, O. M., Kostyna, O. M. (2015). Rozvytok intehrovanykh system zv’iazku ta peredachi danykh dlia potreb Zbroinykh Syl. Ozbroiennia ta viiskova tekhnika, 1 (5), 35–40.
  3. Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. doi: https://doi.org/10.21303/2461-4262.2021.001940
  4. Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. doi: https://doi.org/10.15587/1729-4061.2020.208554
  5. Yeromina, N., Kurban, V., Mykus, S., Peredrii, O., Voloshchenko, O., Kosenko, V. et al. (2021). The Creation of the Database for Mobile Robots Navigation under the Conditions of Flexible Change of Flight Assignment. International Journal of Emerging Technology and Advanced Engineering, 11 (5), 37–44. doi: https://doi.org/10.46338/ijetae0521_05
  6. Rotshtein, A. P. (1999). Intellektualnye tekhnologii identifikatcii: nechetkie mnozhestva, geneticheskie algoritmy, neironnye seti. Vinnitca: UNIVERSUM, 320.
  7. Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. doi: https://doi.org/10.1016/j.eswa.2018.11.023
  8. Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. doi: https://doi.org/10.1016/j.procs.2018.04.233
  9. Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114. doi: https://doi.org/10.1016/j.dss.2019.113114
  10. Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633. doi: https://doi.org/10.1016/j.future.2018.06.046
  11. Gödri, I., Kardos, C., Pfeiffer, A., Váncza, J. (2019). Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals, 68 (1), 471–474. doi: https://doi.org/10.1016/j.cirp.2019.04.001
  12. Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24 (1), 65–75. doi: https://doi.org/10.1016/s0020-7373(86)80040-2
  13. Gorelova, G. V. (2013). Kognitivnyi podkhod k imitatcionnomu modelirovaniiu slozhnykh sistem. Izvestiia IuFU. Tekhnicheskie nauki, 3, 239–250.
  14. Orouskhani, M., Orouskhani, Y., Mansouri, M., Teshnehlab, M. (2013). A Novel Cat Swarm Optimization Algorithm for Unconstrained Optimization Problems. International Journal of Information Technology and Computer Science, 5 (11), 32–41. doi: https://doi.org/10.5815/ijitcs.2013.11.04
  15. Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. doi: https://doi.org/10.1016/j.autcon.2018.02.025
  16. Harding, J. L. (2013). Data quality in the integration and analysis of data from multiple sources: some research challenges. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1, 59–63. doi: https://doi.org/10.5194/isprsarchives-xl-2-w1-59-2013
An analysis of knowledge representation methods in intelligent decision-making support systems

Downloads

Published

2023-10-26

How to Cite

Gaman, O., Shyshatskyi, A., Babenko, V., Pluhina, T., Degtyareva, L., Shaposhnikova, O., Pronin, S., Protas, N., Stasiuk, T., & Kutsenko, I. (2023). An analysis of knowledge representation methods in intelligent decision-making support systems. Technology Audit and Production Reserves, 5(2(73), 22–26. https://doi.org/10.15587/2706-5448.2023.289747

Issue

Section

Systems and Control Processes