Static characteristics of electromechanical systems with second order sliding mode

Authors

  • Роман Сергеевич Волянский Dniprodzerzhynsk State Technical University, Str. Dniprobudivska, 2, Dniprodzerzhinsk, Ukraine, 51918, Ukraine https://orcid.org/0000-0001-5674-7646

DOI:

https://doi.org/10.15587/2312-8372.2014.32251

Keywords:

electromechanical system, second-order sliding mode, static characteristics, nonlinear control

Abstract

The article is devoted to analytical investigation of the steady state points of generalized closed electromechanical systems that are experiencing the oscillatory processes. The main purpose of this paper is to develop the method for steady-state values determining of the state vector components of a closed system, depending on its control algorithms and equations of motion. Methods of differential geometry and modern control theory allow converting these equations, representing them to the different phase spaces. Transition to the space, the coordinates of which are interconnected by differential dependencies, is done in the work by the feedback conversions and a system of equations of a generalized electromechanical object motion in controlled Brunovsky form is obtained. Based on the analysis of the system it is found the equation of static equilibrium of the object, and it is shown that this equation equating to controller algorithm simplifies the determination of steady-state values of the state variables of the object. Using the proposed method is illustrated by the definition of control error and finding the static characteristics of control loop of DC electric drive position. This material can be useful for specialists in the field of electromechanical systems of automation and control systems of dynamic objects.

Author Biography

Роман Сергеевич Волянский, Dniprodzerzhynsk State Technical University, Str. Dniprobudivska, 2, Dniprodzerzhinsk, Ukraine, 51918

PhD, Assistant Professor

Department of Electrotechnic and Electromechanic 

References

  1. Emelyanov, S. V., Korovin, S. K. (1997). Novye tipy obratnoy svyazi. Мoscow: Nauka, 352.
  2. Khan, M. K., Goh, K. B., Spurgeon, S. K. (2003, December). Second order sliding mode control of a diesel engine. Asian Journal of Control, Vol. 5, № 4, 614–619. doi:10.1111/j.1934-6093.2003.tb00177.x
  3. Bartolini, G., Pisano, A., Usai, E. (2009, December). On the second-order sliding mode control of nonlinear systems with uncertain control direction. Automatica, Vol. 45, № 12, 2982–2985. doi:10.1016/j.automatica.2009.09.018
  4. Bartolini, G., Pisano, A., Usai, E. (2001, September). Digital second-order sliding mode control for uncertain nonlinear systems. Automatica, Vol. 37, № 9, 1371–1377. doi:10.1016/s0005-1098(01)00085-1
  5. Punta, E. (2006). Multivariable Second Order Sliding Mode Control of Mechanical Systems. Proceedings of the 45th IEEE Conference on Decision and Control. IEEE, 4939-4944. doi:10.1109/cdc.2006.376980
  6. Laghrouche, S., Smaoui, M., Brunand, X., Plestan, F. (2004). Robust second order sliding mode controller for electropneumatic actuator. Proceedings of American control conference, June 30 2004-July 2 2004, Vol. 6. Boston, USA, 5090-5095.
  7. Chen, M.-S., Chen, C.-H., Yang, F.-Y. (2007, June). An LTR-observer-based dynamic sliding mode control for chattering reduction. Automatica, Vol. 43, № 6, 1111–1116. doi:10.1016/j.automatica.2006.12.001
  8. Voliansky, R., Sadovoy, A. (2014). Sintez optimalnoi sistemy upravleniya s nelineynoy aktivatsionoy funkciey. Elektrotehnicheskie i kompyuternye sistemy, 15 (91), 69-71.
  9. Kopylov, I. (2001). Matematicheskoe modelirovanie elektricheskih mashin. Мoscow: Vysshay shkola, 327.
  10. Kim, D. (2003). Teoriya avtomaticheskogo upravleniya. Lineynye sistemy. Мoscow: Fizmatlit, 288.
  11. Kim, D. (2004). Teoriya avtomaticheskogo upravleniya. Mnogomernye, nelineynye, optimalnye i adaptivnye sistemy. Мoscow: Fizmatlit, 464.
  12. Sadovoy, A., Sukhinin, B., Sokhina, Yu. (1998). Sistemy optimalnogo upravleniya pretsizionnymi elektroprivodami. Кyiv: ISIMO, 298.
  13. Chilikin, M., Sandler, A. (1981). Оbschiy kurs elektroprivoda. Мoscow: Energoizdat, 576.

Published

2014-12-23

How to Cite

Волянский, Р. С. (2014). Static characteristics of electromechanical systems with second order sliding mode. Technology Audit and Production Reserves, 6(5(20), 42–46. https://doi.org/10.15587/2312-8372.2014.32251

Issue

Section

Power and energy saving