Determination of the largest Lyapunov exponent of chaos in the dynamics of hazardous parameters of a gas environment for the rapid ignition detection

Authors

DOI:

https://doi.org/10.15587/2706-5448.2025.345030

Keywords:

largest Lyapunov exponent, operational detection of ignition, dangerous parameters of the gas environment, premises

Abstract

The object of research is the largest Lyapunov exponent of the dynamics of hazardous gas environment parameters in premises at intervals of reliable absence and presence of ignition of materials in premises. The problem is to determine and develop a strategy for using the largest Lyapunov exponent on a one-dimensional sample of real contaminated measurements of hazardous gas environment parameters in premises for the prompt detection of material ignitions. An experimental verification of the determination of the largest Lyapunov exponent of the dynamics of the main hazardous gas environment parameters during ignition of materials in a laboratory chamber at intervals of reliable absence and occurrence of ignition was performed. It was established that during ignition of materials, the values of the largest Lyapunov exponent indicate a decrease in stability and a transition to chaos in the dynamics of temperature and carbon monoxide concentration for all the test materials under study. This indicates a loss of the degree of “order” in the dynamics of temperature and carbon monoxide concentration. At the same time, the value of the largest Lyapunov exponent of the dynamics of the specific optical density of smoke does not change significantly and remains stable with some decrease in stability during ignition of the material. It was found that the use of such a parameter for detecting the ignition of materials has significant advantages in the case of using the dynamics of temperature and carbon monoxide concentration of the gas environment of the premises. The results obtained are useful from a theoretical point of view for determining the largest Lyapunov exponent for a one-dimensional sample of real contaminated measurements for an arbitrary dangerous parameter of the gas environment at an arbitrary observation interval. The practical significance lies in the possibility of further improving existing fire protection systems of objects in order to prevent fires.

Author Biographies

Igor Tolok, National University of Civil Protection of Ukraine

PhD, Associate Professor, Rector

Boris Pospelov

Doctor of Technical Sciences, Professor, Independent Researcher

Evgenіy Rybka, National University of Civil Protection of Ukraine

Doctor of Technical Sciences, Professor

Science and Innovation Center

Serhii Savchenko, National University of Civil Protection of Ukraine

Vice-Rector

Yurii Kozar, Uzhhorod National University

Doctor of Legal Sciences, Professor

Department of Theory and History of State and Law

Olekcii Krainiukov, V. N. Karazin Kharkiv National University

Doctor of Geographical Sciences, Professor

Department of Ecology and Environmental Management

Konstantin Sporyshev, National Academy of the National Guard of Ukraine

Doctor of Science in Public Administration

Educational and Scientific Institute for Management Training

Larysa Maladyka, National University of Civil Protection of Ukraine

PhD, Associate Professor

Department of Fire Prevention in Populated Areas

Vyacheslav Surianinov, Odesa State Academy of Civil Engineering and Architecture

PhD

Department of Reinforced Concrete Constructions and Transport Constructions

Maksym Harifullin, Lviv State University of Internal Affairs

PhD

Research Center

References

  1. Otrosh, Y., Rybka, Y., Danilin, O., Zhuravskyi, M. (2019). Assessment of the technical state and the possibility of its control for the further safe operation of building structures of mining facilities. E3S Web of Conferences, 123, 01012. https://doi.org/10.1051/e3sconf/201912301012
  2. Semko, A., Beskrovnaya, M., Vinogradov, S., Hritsina, I., Yagudina, N. (2014). The usage of high speed impulse liquid jets for putting out gas blowouts. Journal of Theoretical and Applied Mechanics, 3, 655–664.
  3. Vasyukov, A., Loboichenko, V., Bushtec, S. (2016). Identification of bottled natural waters by using direct conductometry. Ecology, Environment and Conservation, 22 (3), 1171–1176.
  4. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3 (9 (93)), 34–40. https://doi.org/10.15587/1729-4061.2018.133127
  5. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)), 53–59. https://doi.org/10.15587/1729-4061.2017.108448
  6. Cencini, M., Cecconi, F., Vulpiani, A. (2009). Chaos. Series on Advances in Statistical Mechanics. WORLD SCIENTIFIC, 480. https://doi.org/10.1142/7351
  7. Dieci, L., Van Vleck, E. S. (2002). Lyapunov Spectral Intervals: Theory and Computation. SIAM Journal on Numerical Analysis, 40 (2), 516–542. https://doi.org/10.1137/s0036142901392304
  8. Cheng, C., Sun, F., Zhou, X. (2011). One fire detection method using neural networks. Tsinghua Science and Technology, 16 (1), 31–35. https://doi.org/10.1016/s1007-0214(11)70005-0
  9. Ding, Q., Peng, Z., Liu, T., Tong, Q. (2014). Multi-Sensor Building Fire Alarm System with Information Fusion Technology Based on D-S Evidence Theory. Algorithms, 7 (4), 523–537. https://doi.org/10.3390/a7040523
  10. Pospelov, B., Rybka, E., Samoilov, M., Morozov, I., Bezuhla, Y., Butenko, T. et al. (2022). Defining the features of amplitude and phase spectra of dangerous factors of gas medium during the ignition of materials in the premises. Eastern-European Journal of Enterprise Technologies, 2 (10 (116)), 57–65. https://doi.org/10.15587/1729-4061.2022.254500
  11. Jiang YueZhong, J. Y., Wang GuiYan, W. G., LüLeiChang, L., Yuan SuPing, Y. S., Ma Ling, M. L. (2004). Studies on pulp-oriented cultivation techniques of poplar wood. Scientia Silvae Sinicae, 40 (1), 123–130.
  12. Bei, P., Liwei, C., Chang, L. (2012). An Experimental Study on the Burning Behavior of Fabric used Indoor. Procedia Engineering, 43, 257–261. https://doi.org/10.1016/j.proeng.2012.08.044
  13. Peng, X., Liu, S., Lu, G. (2005). Experimental analysis on heat release rate of materials. Journal of Chongqing University, 28, 122–125.
  14. Pospelov, B., Rybka, E., Savchenko, A., Dashkovska, O., Harbuz, S., Naden, E. et al. (2022). Peculiarities of amplitude spectra of the third order for the early detection of indoor fires. Eastern-European Journal of Enterprise Technologies, 5 (10 (119)), 49–56. https://doi.org/10.15587/1729-4061.2022.265781
  15. Pospelov, B., Andronov, V., Rybka, E., Chubko, L., Bezuhla, Y., Gordiichuk, S. et al. (2023). Revealing the peculiarities of average bicoherence of frequencies in the spectra of dangerous parameters of the gas environment during fire. Eastern-European Journal of Enterprise Technologies, 1 (10 (121)), 46–54. https://doi.org/10.15587/1729-4061.2023.272949
  16. Pospelov, B., Rybka, E., Polkovnychenko, D., Myskovets, I., Bezuhla, Y., Butenko, T. et al. (2023). Comparison of bicoherence on the ensemble of realizations and a selective evaluation of the bispectrum of the dynamics of dangerous parameters of the gas medium during fire. Eastern-European Journal of Enterprise Technologies, 2 (10 (122)), 14–21. https://doi.org/10.15587/1729-4061.2023.276779
  17. Sadkovyi, V., Pospelov, B., Rybka, E., Kreminskyi, B., Yashchenko, O., Bezuhla, Y. et al. (2022). Development of a method for assessing the reliability of fire detection in premises. Eastern-European Journal of Enterprise Technologies, 3 (10 (117)), 56–62. https://doi.org/10.15587/1729-4061.2022.259493
  18. Pospelov, B., Andronov, V., Rybka, E., Bezuhla, Y., Liashevska, O., Butenko, T. et al. (2022). Empirical cumulative distribution function of the characteristic sign of the gas environment during fire. Eastern-European Journal of Enterprise Technologies, 4 (10 (118)), 60–66. https://doi.org/10.15587/1729-4061.2022.263194
  19. Heskestad, G., Newman, J. S. (1992). Fire detection using cross-correlations of sensor signals. Fire Safety Journal, 18 (4), 355–374. https://doi.org/10.1016/0379-7112(92)90024-7
  20. Gottuk, D. T., Wright, M. T., Wong, J. T., Pham, H. V., Rose-Pehrson, S. L. (2002). Prototype early warning fire detection system: test series 4 results. Available at: https://apps.dtic.mil/sti/citations/ADA399480
  21. Nakamura, T. (2022). Nonlinear systems and Lyapunov spectrum. Available at: https://sites.google.com/view/lyapunov-spectrum/home
  22. Prat-Guitart, N., Nugent, C., Mullen, E., Mitchell, F. J. G., Hawthorne, D., Belcher, C. M., Yearsley, J. M. (2019). Peat Fires in Ireland. Coal and Peat Fires: A Global Perspective. Elsevier, 451–482. https://doi.org/10.1016/b978-0-12-849885-9.00020-2
  23. Fonollosa, J., Solórzano, A., Marco, S. (2018). Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review. Sensors, 18 (2), 553. https://doi.org/10.3390/s18020553
  24. Liu, C., Zhang, C., Mu, Y., Liu, J., Zhang, Y. (2017). Emission of volatile organic compounds from domestic coal stove with the actual alternation of flaming and smoldering combustion processes. Environmental Pollution, 221, 385–391. https://doi.org/10.1016/j.envpol.2016.11.089
  25. Quintiere, J. G. (2016). Principles of Fire Behavior. CRC Press, 437. https://doi.org/10.1201/9781315369655
  26. Gann, R. G., Bryner, N. P. (2008). Chapter 2 Combustion Products and Their Effects on Life Safety. Fire Protection Handbook. National Fire Protection Assoc, 11–34.
  27. Stec, A. A. (2017). Fire toxicity – The elephant in the room? Fire Safety Journal, 91, 79–90. https://doi.org/10.1016/j.firesaf.2017.05.003
  28. McKenna, S. T., Birtles, R., Dickens, K., Walker, R. G., Spearpoint, M. J., Stec, A. A., Hull, T. R. (2018). Flame retardants in UK furniture increase smoke toxicity more than they reduce fire growth rate. Chemosphere, 196, 429–439. https://doi.org/10.1016/j.chemosphere.2017.12.017
  29. Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequency­temporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 44–49. https://doi.org/10.15587/1729-4061.2018.125926
  30. Schuster, H. G., Just, W. (2005). Deterministic chaos: an introduction. John Wiley & Sons. https://doi.org/10.1002/3527604804
  31. Broer, H. W., Takens, F. (2011). Dynamical systems and chaos. New York: Springer, 313. https://doi.org/10.1007/978-1-4419-6870-8
  32. Vogel, M. (2019). Chaos in nature, 2nd edition. Contemporary Physics, 60 (3), 271–272. https://doi.org/10.1080/00107514.2019.1660722
  33. Vambol, S., Vambol, V., Kondratenko, O., Koloskov, V., Suchikova, Y. (2018). Substantiation of expedience of application of high-temperature utilization of used tires for liquefied methane production. Journal of Achievements in Materials and Manufacturing Engineering, 2 (87), 77–84. https://doi.org/10.5604/01.3001.0012.2830
  34. Winter, L., Taylor, P., Bellenger, C., Grimshaw, P., Crowther, R. G. (2023). The application of the Lyapunov Exponent to analyse human performance: A systematic review. Journal of Sports Sciences, 41 (22), 1994–2013. https://doi.org/10.1080/02640414.2024.2308441
  35. Dubinin, D., Cherkashyn, O., Maksymov, A., Beliuchenko, D., Hovalenkov, S., Shevchenko, S., Avetisyan, V. (2020). Investigation of the effect of carbon monoxide on people in case of fire in a building. Sigurnost, 62 (4), 347–357. https://doi.org/10.31306/s.62.4.2
  36. Hulse, L. M., Galea, E. R., Thompson, O. F., Wales, D. (2020). Perception and recollection of fire hazards in dwelling fires. Safety Science, 122, 104518. https://doi.org/10.1016/j.ssci.2019.104518
  37. Optical/Heat Multisensor Detector (2019). Discovery, 1, 4.
  38. Kantz, H., Schreiber, T. (2004). Nonlinear Time Series Analysis. Cambridge University Press, 396.
  39. Skokos, Ch. (2009). The Lyapunov Characteristic Exponents and Their Computation. Dynamics of Small Solar System Bodies and Exoplanets. Springer, 63–135. https://doi.org/10.1007/978-3-642-04458-8_2
  40. Wolf, A., Swift, J. B., Swinney, H. L., Vastano, J. A. (1985). Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 16 (3), 285–317. https://doi.org/10.1016/0167-2789(85)90011-9
  41. Rosenstein, M. T., Collins, J. J., De Luca, C. J. (1993). A practical method for calculating largest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena, 65 (1-2), 117–134. https://doi.org/10.1016/0167-2789(93)90009-p
  42. Kantz, H. (1994). A robust method to estimate the maximal Lyapunov exponent of a time series. Physics Letters A, 185 (1), 77–87. https://doi.org/10.1016/0375-9601(94)90991-1
  43. Heilmann, О. (2023). Multifunctional Echo State Networks: Effects of Topology and Memory on the Reconstruction of Chaotic Attractors. Available at: https://elib.dlr.de/195462/1/Heilmann_Oliver_20.03.2023_fuer_SS2023.pdf
  44. Busse, A. M. (2004). Classification of Processes by the Lyapunov exponent, Technical Report, Universität Dortmund, Sonderforschungsbereich 475 Komplex itätsreduktion in Multivariaten Datenstrukturen. Dortmund, 70. Available at: https://hdl.handle.net/10419/22583
  45. De Micco, L., Antonelli, M., Crespo, M. L., Cicuttin, A. (2017). HW/SW codesign of maximum Lyapunov exponent estimator. 2017 IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS). IEEE, 1–4. https://doi.org/10.1109/lascas.2017.7948066
Determination of the largest Lyapunov exponent of chaos in the dynamics of hazardous parameters of a gas environment for the rapid ignition detection

Downloads

Published

2025-12-29

How to Cite

Tolok, I., Pospelov, B., Rybka, E., Savchenko, S., Kozar, Y., Krainiukov, O., Sporyshev, K., Maladyka, L., Surianinov, V., & Harifullin, M. (2025). Determination of the largest Lyapunov exponent of chaos in the dynamics of hazardous parameters of a gas environment for the rapid ignition detection. Technology Audit and Production Reserves, 6(3(86), 21–26. https://doi.org/10.15587/2706-5448.2025.345030

Issue

Section

Ecology and Environmental Technology