Mathematical description of the cooling process of generating gas during a waste disposal

Authors

  • Виола Владиславовна Вамболь National Aerospace University "Kharkiv Aviation Institute", str. Chkalova 17, Kharkiv, Ukraine, 61070, Ukraine https://orcid.org/0000-0002-8229-3956
  • Владимир Евгеньевич Костюк National Aerospace University "Kharkiv Aviation Institute", str. Chkalova 17, Kharkiv, Ukraine, 61070, Ukraine https://orcid.org/0000-0003-0142-8060
  • Елена Ивановна Кирилаш National Aerospace University "Kharkiv Aviation Institute", str. Chkalova 17, Kharkiv, Ukraine, 61070, Ukraine https://orcid.org/0000-0003-2949-3577

DOI:

https://doi.org/10.15587/2312-8372.2015.40467

Keywords:

recycling, waste, environmental safety, dioxins, mathematical modeling, two-phase multicomponent medium

Abstract

This article discusses the gas-dynamic processes of interfacial interactions occurring in the cooling block of generator gas by water injection, dispersed by centrifugal nozzle, designed to increase the level of environmental safety for waste disposal. The main purpose of this study is to develop mathematical models of gas and dispersed phase, as well as the mathematical description of interfacial interactions in cooling unit of generator gas. Using the classical theory of gas dynamics provides a mathematical relations describing the gas and dispersed phase. To solve the resulting system of equations is necessary to consider two-way communication by alternately solving the equations of dispersed and continuous phases as long as the decision of the two phases is not installed. The research results can be applied to design of cooling unit of generator gas as one of the elements of device for waste management in order to improve the region's environmental safety.

Author Biographies

Виола Владиславовна Вамболь, National Aerospace University "Kharkiv Aviation Institute", str. Chkalova 17, Kharkiv, Ukraine, 61070

Candidate of Technical Science, Associate Professor

Department of chemistry, environmental science and technologies of expertise

Владимир Евгеньевич Костюк, National Aerospace University "Kharkiv Aviation Institute", str. Chkalova 17, Kharkiv, Ukraine, 61070

Candidate of Technical Science, Senior Researcher

Problem Scientific Research laboratory of Diagnostic aircraft engine of department aircraft engine design

Елена Ивановна Кирилаш, National Aerospace University "Kharkiv Aviation Institute", str. Chkalova 17, Kharkiv, Ukraine, 61070

Problem Scientific Research laboratory of Diagnostic aircraft engine of department aircraft engine design

References

  1. Nechiporuk, N. V., Ersmambetov, V. Sh. (2012). Al'ternativnaia tehnologiia utilizatsii othodov zhiznedeiatel'nosti. Ekologіchna bezpeka, 2 (14), 80-84.
  2. Kobrin, V. N., Nechiporuk, N. V., Vambol, V. V. (2014). Sistema upravleniia ekologicheskoi bezopasnost'iu pri utilizatsii tverdyh bytovyh i proizvodstvennyh othodov. Ekologіchna bezpeka, 2 (18), 25-30.
  3. Fedorov, L. A. (1994). Dioksiny kak ekologicheskaia opasnost': retrospektiva i perspektivy. Raspad i obrazovanie dioksina pri gorenii othodov, 13 (2), 17-33.
  4. Milosh, V. V. Dioksiny i ih potentsial'naia opasnost' v ekosisteme «chelovek – okruzhaiushchaia sreda». Available: http://crowngold.narod.ru/articles/dioxini.htm
  5. Slenkin, M. V., Zhovmir, N. M., Drozd K. A. (2005). Obrazovanie dioksinov pri termicheskoi utilizatsii tverdyh bytovyh othodov. Materialy ІІ Mezhdunar. konf. "Sotrudnichestvo dlia resheniia problemy othodov", 9–10 fevralia 2005 g., 253-255.
  6. Themelis, N. J., Castaldi, M. J. (2010). Technical and economic analysis of Plasma-assisted Waste-to-Energy processes. Columbia University, 79.
  7. Hyun-Seo Park, Beom-Jae Lee, Seong-Jung Kim. (2005). Medical Waste Treatment Using Plasma. J. Ind. Eng Chem., 11 (3), 353-360.
  8. Ha, S. A., Son, H. J., Sung, N. C. (2000). Waste incineration. J. Korea Society of Waste Management, 17, 665.
  9. Park, H. S., Chung, J. D. (2001). The formation of dioxins from waste incineration. J. Korea Society of Waste Management, 18, 302.
  10. Park, H. S., Lee, B. J. (2001). Secondary environmental problem during incineration. J. Korea Society of Waste Management, 218, 722.
  11. Vambol, V. V. (2015). Modelirovanie gazodinamicheskih protsessov v bloke ohlazhdeniia generatornogo gaza ustanovki dlia utilizatsii othodov. Tehnologii tehnosfernoi bezopasnosti: internet-zhurnal, 1(59). Available: http://ipb.mos.ru/ttb/index.html
  12. Vambol, V. V.; FGBOU VPO Voronezhskii institut GPS MChS Rossii. (2014). Snizhenie urovnia dioksinov pri utilizatsii othodov. Sb. st. po materialam III vseros. nauch.-prakt. konf. s mezhdunar. uchastiem "Problemy bezopasnosti pri likvidatsii posledstvii chrezvychainyh situatsii", 19 dekabria 2014 g., Ch. 1, 216-218.
  13. Vambol, S. A., Skob, Yu. A., Nechiporuk, N. V. (2013). Modelirovanie sistemy upravleniia ekologicheskoi bezopasnost'iu s ispol'zovaniem mnogofaznyh dispersnyh struktur pri vzryve metanovozdushnoi smesi i ugol'noi pyli v podzemnyh gornyh vyrabotkah ugol'nyh shaht. Vestnik Kazan. tehnol. un-ta, 16 (24), 68-74.
  14. Vambol, S. A. (2013). Sistemy upravleniia ekologicheskoi bezopasnost'iu, kotorye ispol'zuiut mnogofaznye dispersnye struktury. Kh.: Nats. aerokosm. un-t im. N. E. Zhukovs-kogo «Har'k. aviats. in-t», 204.
  15. Launder, B. E., Spalding, D. B. (1972). Lectures in Mathematical Models of Turbulence. London: Academic Press, 458.
  16. Launder, B. E., Spalding, D. B. (1974). The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering, 3, 269-289.
  17. Schmidt, D. P., Corradini, M. L., Rutland, C. J. (2000). A Two-Dimensional, Non-Equilibrium Model of Flashing Nozzle Flow. Proceedings of the 3rd ASME·JSME Joint Fluids Engineering Conference, July 18-23, 1999, San Francisco, Calif. American Society of Mechanical Engineers, 1322.
  18. Crowe, C. T., Sharma, M. P., Stock, D. E. (1977). The Particle-Source-In Cell (PSI-CELL) Model for Gas-Droplet Flows. Journal of Fluids Engineering, 99 (2), 325-332. doi:10.1115/1.3448756
  19. Loitsianskii, L. G. (1978). Mehanika zhidkosti i gaza. Moskva: Nauka, 736.
  20. Vambol, S. A. (2012). Modelirovanie dispersnoi fazy protsessa ustanovki vodnyh zaves v sistemah upravleniia ekologicheskoi bezopasnost'iu. Ekologіchna bezpeka, 2 (14), 15-18.
  21. Vambol, V. V. (2014). Matematicheskoe modelirovanie gazovoi fazy ohlazhdeniia generatornogo gaza ustanovki utilizatsii othodov zhiznedeiatel'nosti. Vіsnik Kremench. nats. un-tu іmenі Mihaila Ostrograds'kogo, 6 (89), Ch. 1, 148-152.
  22. Kostiuk, V. E. (1988). K vyboru approksimiruiushchego vyrazheniia dlia koeffitsienta aerodinamicheskogo soprotivleniia kapli. Nauch.-metod. materialy po teorii aviatsionnyh dvigatelei, 6, 13-21.
  23. Shervud, T., Pigford, R., Uilki, Ch. (1988). Massoperedacha. Moskva: Mashinostroenie, 600.

Published

2015-04-02

How to Cite

Вамболь, В. В., Костюк, В. Е., & Кирилаш, Е. И. (2015). Mathematical description of the cooling process of generating gas during a waste disposal. Technology Audit and Production Reserves, 2(4(22), 23–29. https://doi.org/10.15587/2312-8372.2015.40467

Issue

Section

Technologies of food, light and chemical industry