Developing of integral control system of topological elements of optical scales and grids

Authors

  • Валентин Іванович Гордієнко RPC «Photoprylad», St. B. Vyshnevetskoho, 85, Cherkasy, Ukraine, 18001, Ukraine https://orcid.org/0000-0002-7465-2226
  • Наталія Володимирівна Качур V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Ave. Nauky 41, Kyiv, Ukraine, 03028, Ukraine https://orcid.org/0000-0001-6868-8452
  • Ольга Миколаївна Маркіна National Technical University of Ukraine «Kyiv Polytechnic Institute», Ave. Peremohy 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-4406-1644
  • Володимир Петрович Маслов V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Ave. Nauky 41, Kyiv, Ukraine, 03028, Ukraine https://orcid.org/0000-0001-7795-6156

DOI:

https://doi.org/10.15587/2312-8372.2015.44395

Keywords:

optical system, geometric dimension, microscope, measure, scales and grids LED-display

Abstract

An integrated approach to creating TV measurement system of geometrical dimensions of topological elements of scales and grids is considered in the article. The main aim is to create and increase the accuracy of measuring television system based on a microscope Biolam to control the geometric dimensions of the topological elements of optical scales and grids. The study was conducted by optical methods and atomic force microscopy. It is developed a technical approach to create an integrated measuring system for technical audit and control of geometric dimensions of topological elements of optical scales and grids. The factors that affect the value of the desired signal are analyzed and the advantages of LED-display as the illuminator in front of the halogen lamp in the developed measuring system are experimentally demonstrated. The experiments on the integrated measuring system using a microscope Biolam and television camera Novus-130 BH allow determining the optimum conditions and reduce the measurement error of topological elements of optical scales and grids by 4,5 % and measure the size of the elements 6-10 microns with an accuracy of ± 0,5 microns. Results of the study can be applied to the optoelectronic enterprises to improve an accuracy of control scales and grids.

Author Biographies

Валентин Іванович Гордієнко, RPC «Photoprylad», St. B. Vyshnevetskoho, 85, Cherkasy, Ukraine, 18001

Doctor of Technical Sciences, Chief Designer, Deputy General Director

Наталія Володимирівна Качур, V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Ave. Nauky 41, Kyiv, Ukraine, 03028

Junior Researcher

Department of Physics and technological bases of sensory materials

Ольга Миколаївна Маркіна, National Technical University of Ukraine «Kyiv Polytechnic Institute», Ave. Peremohy 37, Kyiv, Ukraine, 03056

Senior Lecturer

Scientific, analytic and ecological instruments and systems

Володимир Петрович Маслов, V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Ave. Nauky 41, Kyiv, Ukraine, 03028

Doctor of Technical Sciences, Associate Professor, Senior Researcher, Head of Department

Department of Physics and technological bases of sensory materials

References

  1. Maslov, V. (2012). Improving the accuracy of measurement of linear dimensions microdefects in detail with optically transparent materials through television vehicles. Methods and Devices for Quolity Control, 29, 96-101.
  2. Tan, J. (2003, October 1). Differential confocal optical system using gradient-index lenses. Optical Engineering, 42 (10), 2868–2871. doi:10.1117/1.1602459
  3. Youk, Y., Kim, D. Y. (2005, August). A Confocal Scanning Optical Microscope System for Measuring Refractive Index Profiles of Specialty Optical Waveguides. Microscopy and Microanalysis, 11 (S02), 726-727. doi:10.1017/s1431927605505269
  4. Li, Q., Lifen, B., Shifu, X., Luyun, Ch. (2002, June 1). Autofocus system for microscope. Optical Engineering, 41 (6), 1289–1294. doi:10.1117/1.1473639
  5. Török, P., Kao, F.-J. (2007). Optical Imaging and Microscopy. Optical Sciences. Berlin, Heidelberg: Springer, 497. doi:10.1007/978-3-540-69565-3
  6. Huang, B. (2010, February). Super-resolution optical microscopy: multiple choices. Current Opinion in Chemical Biology, 14 (1), 10–14. doi:10.1016/j.cbpa.2009.10.013
  7. Yazdanfar, S., Kenny, K. B., Tasimi, K., Corwin, A. D., Dixon, E. L., Filkins, R. J. (2008). Simple and robust image-based autofocusing for digital microscopy. Optics Express, 16 (12), 8670–8677. doi:10.1364/oe.16.008670
  8. Shimobaba, T., Sato, Y., Miura, J., Takenouchi, M., Ito, T. (2008). Real-time digital holographic microscopy using the graphic processing unit. Optics Express, 16 (16), 11776–11781. doi:10.1364/oe.16.011776
  9. Markina, O., Kachur, N., Maslov, V.; assignee: Markina, O., Kachur, N., Maslov, V. (2014, December 25). The Method Of Determining The Geometric Dimensions Micro-Scale Transparent Objects Transparent Objects. Patent UA 95615. Appl. № u 2014 08497. Filed 25.07.2014. Bull. № 24, 3.
  10. Maslov, V. (2013). Logistic Approach to the Dependence of Efficiency of Scientific-and-Technical Projects on Resources. Journal of Business and Management Sciences, 1 (2), 14-17. doi:10.12691/jbms-1-2-1

Published

2015-05-28

How to Cite

Гордієнко, В. І., Качур, Н. В., Маркіна, О. М., & Маслов, В. П. (2015). Developing of integral control system of topological elements of optical scales and grids. Technology Audit and Production Reserves, 3(1(23), 51–55. https://doi.org/10.15587/2312-8372.2015.44395