Analysis of technologies of forming details from sheet thermally strengthened aluminum alloys

Authors

  • Богдан Сергійович Романов National Technical University of Ukraine «Kyiv Polytechnic Institute», ave. Peremogy, 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-7914-4546
  • Олексій Дмитрович Кагляк National Technical University of Ukraine «Kyiv Polytechnic Institute», ave. Peremogy, 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-5602-543X
  • Анатолій Миколайович Лутай National Technical University of Ukraine «Kyiv Polytechnic Institute», ave. Peremogy, 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-3700-0819
  • Леонід Федорович Головко National Technical University of Ukraine «Kyiv Polytechnic Institute», ave. Peremogy, 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-7803-0312

DOI:

https://doi.org/10.15587/2312-8372.2015.44413

Keywords:

laser forming, sheet materials, bending, aluminum alloys, pellet-impact forming

Abstract

This article is devoted to study ways of forming thermally-hardened alloys, including aluminum and titanium. The authors analyze the advantages and disadvantages of traditional methods of forming such as bending to free press, rolling on three and four roll bending machines, blast forming, bending with stretching on special robots or pulling presses and combined processing methods. These methods require special technological equipment and highly skilled performers; require performance processing for a large number of transactions and conversions and is labor-intensive; after the formation it is necessary to carry out additional processing to reduce surface roughness. These processes are not quickly adjustable that in a single and small batch production of double curvature surfaces resulting in increased cost of the final product. The authors proposed to use for the manufacture of parts, from the above materials, laser forming process that is flexible, quickly adjustable and has enough performance. In addition, the authors suggest using forced cooling of the sample during processing that will increase the productivity of the process and additionally prevent thermal softening of the material.

The use of laser forming for forming thermally-hardened aircraft materials will simplify and reduce the cost of the process of manufacturing parts of double curvature without loss of performance.

Author Biographies

Богдан Сергійович Романов, National Technical University of Ukraine «Kyiv Polytechnic Institute», ave. Peremogy, 37, Kyiv, Ukraine, 03056

Postgraduate

Department of laser technology and physical-technical technologies

Олексій Дмитрович Кагляк, National Technical University of Ukraine «Kyiv Polytechnic Institute», ave. Peremogy, 37, Kyiv, Ukraine, 03056

Candidate of Technical Sciences, Associate Professor

Department of laser technology and physical-technical technologies

Анатолій Миколайович Лутай, National Technical University of Ukraine «Kyiv Polytechnic Institute», ave. Peremogy, 37, Kyiv, Ukraine, 03056

Senior Lecturer

Department of laser technology and physical-technical technologies

Леонід Федорович Головко, National Technical University of Ukraine «Kyiv Polytechnic Institute», ave. Peremogy, 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of laser technology and physical-technical technologies

References

  1. Lupkin, B. V., Lagutin, A. I. (2006). Formoobrazovanie drob'iu kak metod obrabotki krupnogabaritnyh detalei slozhnoi krivizny v samoletostroenii. Aviatsionno-kosmicheskaia tehnika i tehnologiia, 2, 17–20.
  2. Kirilenko, A. N. (2010). Sudostroitel'nye splavy na osnove aliuminiia. Spetsialna metalurhiia: vchora, sohodni, zavtra, 197–203.
  3. Sikul'skii, V. T., D'iachenko, Yu. V., Hitryh, E. E., Voron'ko, I. A. (2014). Issledovanie protsessa formoobrazovaniia rebristyh panelei dvoinoi krivizny so slozhnoi vnutrennei graviuroi. Aviatsionno-kosmicheskaia tehnika i tehnologiia, 4, 14–21.
  4. Sikul'skii, V. T. (2013). Formoobrazovanie monolitnyh panelei slozhnyh form. Aviatsionno-kosmicheskaia tehnika i tehnologiia, 5-102, 15–19.
  5. Ogurtsov, P. S. (2011). Modelirovanie protsessa formoobrazovaniia zagotovki v usloviiah polzuchesti materiala na zhestkoi matritse v avtoklave. Elektronnyi zhurnal «Trudy MAI», 45, 25-30.
  6. Groshikov, A. I., Malafeev, V. A. (1976). Zagotovitel'no-shtampovochnye raboty v samoletostroenii. M.: Mashinostroenie, 439.
  7. Belianin, P. N. (1979). Proizvodstvo shirokofiuzeliazhnyh samoliotov. M.: Mashinostroenie, 360.
  8. Malashchenko, A. Yu. (2014). Effektivnosti tehnologicheskogo sochetaniia gibki-rokatki i drobeudarnogo formoobrazovaniia dlinnomernyh obvodoobrazuiushchih detalei. M., 154.
  9. Pashkov, A. E. (2013). Avtomatizirovannaia tehnologiia kombinirovannogo formoobrazovaniia panelei samoletov. V Vserossiiskaia konferentsiia «Sovremennye naukoemkie innovatsionnye tehnologii», 453-457.
  10. Gorbunov, M. N. (1981). Tehnologiia zagotovitel'no-shtampovochnyh rabot v proizvodstve samoletov. M.: Mashinostroenie, 224.
  11. Moshnin, E. I. (1959). Gibka, obtiazhka i pravka na pressah. M.: Mashgiz, 254.
  12. Lupkin, B. V., Mladinov, S. D., Lagutin, A. I., Nikitenko, V. A. (2007). Primenenie drobeudarnoi obrabotki v aviatsionnoi promyshlennosti. Sbornik nauchnyh trudov «Otkrytye informatsionnye i komp'iuternye integrirovannye tehnologii», 36, 20-28.
  13. Kaglyak, O. D. (2012). Formoutvorennia prostorovykh metalevykh konstruktsii lokalnym lazernym nahrivanniam. K., 149.
  14. Chen, J. (2009). Modelling of Simultaneous Transformations in Steels. Department of Materials Science and Metallurgy, Univesity of Cambridge England February. Available: http://www.dspace.cam.ac.uk/handle/1810/217866
  15. Cheng, J., Yao, Y. L. (2002). Microstructure Integrated Modeling of Multiscan Laser Forming. Journal of Manufacturing Science and Engineering, Vol. 124, № 2, 379–387. doi:10.1115/1.1459088
  16. Hu, Z., Labudovic, M., Wang, H., Kovacevic, R. (2001, March). Computer simulation and experimental investigation of sheet metal bending using laser beam scanning. International Journal of Machine Tools and Manufacture, Vol. 41, № 4, 589–607. doi:10.1016/s0890-6955(00)00058-4
  17. Magee, J., Watkins, K. G., Steen, W. M. (1997). Edge Effects in Laser Forming. Laser Assisted Net Shape Engineering 2, Proceedings of LANE’97, Meisenbach Bamberg, 399-406.
  18. Iordanova, I., Antonov, V., Gurkovsky, S. (2002, April). Changes of microstructure and mechanical properties of cold-rolled low carbon steel due to its surface treatment by Nd:glass pulsed laser. Surface and Coatings Technology, Vol. 153, № 2-3, 267–275. doi:10.1016/s0257-8972(01)01668-1
  19. Hennige, T., Holzer, S., Vollertsen, F., Geiger, M. (1997, November). On the working accuracy of laser bending. Journal of Materials Processing Technology, Vol. 71, № 3, 422–432. doi:10.1016/s0924-0136(97)00108-8
  20. Smirnova, N. A. (2000). Razrabotka i issledovanie protsessov uprochneniia poverhnosti aliuminievyh splavov izlucheniem lazera. M., 222.
  21. Roohi, A. H., Gollo, M. H., Naeini, H. M. (2012, August). External force-assisted laser forming process for gaining high bending angles. Journal of Manufacturing Processes, Vol. 14, № 3, 269–276. doi:10.1016/j.jmapro.2012.07.004
  22. Mohammadi, A., Vanhove, H., Van Bael, A., Duflou, J. R. (2012). Bending Properties of Locally Laser Heat Treated AA2024-T3 Aluminium Alloy. Physics Procedia, Vol. 39, 257–264. doi:10.1016/j.phpro.2012.10.037
  23. Geiger, M., Merklein, M., Pitz, M. (2004, September). Laser and forming technology—an idea and the way of implementation. Journal of Materials Processing Technology, Vol. 151, № 1-3, 3–11. doi:10.1016/j.jmatprotec.2004.04.004
  24. Chan, K. C., Liang, J. (2000, April). Laser bending of an Al6013/SiCp aluminium matrix composite sheet. Journal of Materials Processing Technology, Vol. 100, № 1-3, 214–218. doi:10.1016/s0924-0136(99)00380-5
  25. Zaeh, M. F., Hornfeck, T. (2008, April 22). Development of a robust laser beam bending process for aluminum fuselage structures. Production Engineering, Vol. 2, № 2, 149–155. doi:10.1007/s11740-008-0100-x
  26. Knupfer, S. M., Moore, A. J. (2010, June). The effects of laser forming on the mechanical and metallurgical properties of low carbon steel and aluminium alloy samples. Materials Science and Engineering: A, Vol. 527, № 16-17, 4347–4359. doi:10.1016/j.msea.2010.03.069
  27. Novikov, I. I. (1978). Teoriia termicheskoi obrabotki metallov. M.: Metallurgiia, 154.

Published

2015-05-28

How to Cite

Романов, Б. С., Кагляк, О. Д., Лутай, А. М., & Головко, Л. Ф. (2015). Analysis of technologies of forming details from sheet thermally strengthened aluminum alloys. Technology Audit and Production Reserves, 3(1(23), 72–77. https://doi.org/10.15587/2312-8372.2015.44413