Exploration of describing the vector-parametric bi-spline, defined by the cubic spline with control points incident with surface of appropriate smoothness

Authors

  • Александр Михайлович Ковтун Izmail Faculty of Odessa National Maritime Academy, 9, Fanagoriyskaja Str., Izmail, Odessa Region, Ukraine, 68600, Ukraine https://orcid.org/0000-0002-6531-2561

DOI:

https://doi.org/10.15587/2312-8372.2015.44416

Keywords:

vectorial-parametrical bispline, bispline, spline with control points incidental with the appropriate curve, evenness

Abstract

Explorations carried on within the framework of geometrical simulations are aimed to develop already existing techniques describing spline surface, since under certain circumstances it appears to be hard to construct even outlines applying available methodologies. The proposed technique is based on the principle that control points belong to the curve under consideration.

Basing on the preceding researches the article proposes a technique of bispline configuration as a vectorial-parametrical surface with control points incidental to the relevant curve applying the third degree splines meeting the evenness criteria within the first and the second degrees. To achieve this purpose the vectorial-parametrical spline r = r(u) is extended (or, so to say, pulled out) in the direction identified with v, i. e. in a direction, other than u thus enabling to develop the appropriate surface “portions”. Further, to obtain bispline with appropriate evenness adherence of appropriate surface portions is required preserving the appropriate evenness along the adhering line, obtaining thus the equity of appropriate derivatives (both the first and the second). However, to maintain total evenness of the second degree, i. e. to preserve the continuity of the second quadric form within the entire form it is yet necessary to meet the compound derivatives equity criterion. The test examples of the bicubic splines are included into the work.

The benefit of this research is to develop new, more convenient method that gives the developer more flexible and convenience in its operation that was described above.

Author Biography

Александр Михайлович Ковтун, Izmail Faculty of Odessa National Maritime Academy, 9, Fanagoriyskaja Str., Izmail, Odessa Region, Ukraine, 68600

Candidate of Technical Sciences, Associate Professor

Department of General Technical Subjects 

References

  1. Faux, I., Pratt, M. (1982). Computational Geometry. Translated from English. Moscow: Mir, 304.
  2. Zav'ialov, Yu. S., Kvasov, B. I., Miroshnichenko, V. L. (1982). Metody splain-funktsii. Moscow: Nauka, 352.
  3. Kovtun, O. M. (2015). Polinomialna kryva tretoho stepenia iz upravliaiuchymy tochkamy, shcho nalezhat kryvii. Suchasni problemy modeliuvannia, 4, 63–67.
  4. Golovanov, N. N. (2002). Geometricheskoe modelirovanie. M.: Izdatel'stvo Fiziko-matematicheskoi literatury, 472.
  5. Rogers, D., Adams, J. (2001). Mathematical Elements for Computer Graphics. Translated from English. Moscow: Mir, 604.
  6. Yakunin, V. I. (1980). Geometricheskie osnovy avtomatizirovannogo proektirovaniia tehnicheskih poverhnostei. M.: Mai, 86.
  7. Watt, A. (2000). 3D Computer Graphics. Ed. 3. Addison-Wesley, 570.
  8. Chen, L., Hu, S. (2011, May). A Comparison of Improvements for Shear Warp Algorithm Using Lagrange or Cubic Spline Interpolation. 2011 5th International Conference on Bioinformatics and Biomedical Engineering. IEEE, 1–4. doi:10.1109/icbbe.2011.5780354
  9. Herman, G. T., Bucholtz, C. A., Jingsheng Zheng. (1991). Shape-based Interpolation Using Modified Cubic Splines. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Volume 13: 1991. IEEE, 291–292. doi:10.1109/iembs.1991.683941
  10. Badaev, Yu. I., Kovtun, A. M. (2011). Spetsial'nye splainy iz polinomov tret'ei, chetviortoi i piatoi stepenei v geometricheskom modelirovanii. Odessa: Feniks, 315.
  11. Badaiev, Yu. I., Kovtun, O. M. (2003). Aproksymatsiia splainamy na osnovi kryvykh z intsydentnymy tochkamy. Materialy Mizhnarodnoi naukovo-praktychnoi konferentsii. Suchasni problemy heometrychnoho modeliuvannia (spetsvypusk). Lviv: Natsionalnyi universytet «Lvivska politekhnika», 75–77.
  12. Badaiev, Yu. I., Kovtun, O. M. (2003). Vektorno-parametrychni sehmenty, poverkhni ta tila za intsydentnymy z nymy tochkamy. Prykladna heometriia ta inzhenerna hrafika. Pratsi Tavriiskoi derzhavnoi ahrotekhnichnoi akademii, 4 (18), 37–40.

Published

2015-05-28

How to Cite

Ковтун, А. М. (2015). Exploration of describing the vector-parametric bi-spline, defined by the cubic spline with control points incident with surface of appropriate smoothness. Technology Audit and Production Reserves, 3(1(23), 69–72. https://doi.org/10.15587/2312-8372.2015.44416