Analysis of intensification methods of heat and mass transfer in the drying process and dewatering features of thermolabile organic materials

Authors

DOI:

https://doi.org/10.15587/2312-8372.2015.47597

Keywords:

drying, intensification, thermolabile material, camera, compatible process, machine rotor

Abstract

The traditional ways of intensification of heat and mass transfer in drying materials are analyzed in the article.

Part of the above methods of intensification is implemented in the cameras of compatible processes.

Construction analysis of compatible processes showed that in order to implement active hydrodynamic regime in the chamber during processing high-wet thermally labile materials such as chicken manure, sludge after fermentation process and so on is most advisable to use a mechanical rotor rotating along the axis of the camera. This results in generation of a weighted layer material, separation of large pieces, swirl of the gas flow, reducing adhesion to surfaces of working chamber, constant updating of heat transfer surface.

The author has experimentally proved that you can get these orders of magnitude using a method of compatible drying and dispersion processes by mechanical rotor drying thermally labile high-wet materials:

- heat-transfer coefficient within 900-1200 W/(m2·deg.);

- initial coolant temperature within 600-800 ºC;

- number of heat for evaporation within 3500-4000 kJ/kg of evaporated water;

- average camera strain on evaporated moisture 350-400 kg/(m³·h).

Author Biography

Andrew Lyashenko, Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, str. Zhelyabova, 2a, Kyiv, Ukraine, 03680

Candidate of Technical Science, Senior Researcher

References

  1. Lykov, A. V. (1968). Teoriia sushki. M.: Gosenergoizdat, 472.
  2. Kremnev, O. A., Borovskii, V. R., Dolinskii, A. A. (1963). Skorostnaia sushka. K.: Gostehizdat USSR, 382.
  3. Sazhin, B. S. (1984). Osnovy tehniki sushki. M.: Khimiia, 320.
  4. Kreith, F., Black, W. (1980). Basic heat transfer. N. Y., 512.
  5. Arpaci, V. (1966). Conduction Heat Transfer. Addison-Wesley, 237.
  6. Gіnzburg, A. S. (1960). Sushka pishchevykh produktov. M.: Pishchepromizdat, 438.
  7. Welty, J. (1974). Engineering Heat Transfer. N. Y., 98.
  8. Borisov, Yu. Ya. (1960). Intensifikatsiia protsessov sushki v akusticheskom pole. Primenenie ul'trazvuka v khimiko-tehnologicheskikh protsesakh. Izd-vo AN SSSR, 211.
  9. Borisov, Yu. Ya., Makarova, L. O. (1960). Ul'trazvuk v tekhnike nastoiashchego i budushcehogo. Izd-vo AN SSSR, 152.
  10. Sazhin, B. S., Chuvpilo, E. A. (1975). Obzornaia informatsiia. M.: Ser. HM-1, TsINTIKhimneftemash, 72.
  11. Sauvageot, F., Beley, P., Marchand, A., Simatas, D. (1969). Juelgues donnels experimentals sur le compartementan cours de la cryogessication des composes volatils de jue fruits-full. Inst. int. Froid, 9, 133–149.
  12. Peskin, R. (1960). Proc. Heat Transfer and Fluid. Stanford: Mech. Inst., 114.
  13. Zenz, F., Othmer, D. (1960). Fluidization and Fluid – Particle Systems. N. Y., 278.
  14. Sazhin, B. S. (1977). Apparaty so vstrechnymi zakruchennymi potokami. TOKhT, 4, 633–636.
  15. Gebhart, B. (1970). Heat Transfer. N. Y.: Mc. Graw, 327.
  16. Sazhin, B. S. (1973). Sovremennye metody sushki. M.: Znanie, 64.
  17. Gamaiunov, N. I., Il'chenko, L. I. (1979). Ostsilliruiushchii rezhim sushki. Khim. prom., 6, 344–348.

Downloads

Published

2015-07-23

How to Cite

Lyashenko, A. (2015). Analysis of intensification methods of heat and mass transfer in the drying process and dewatering features of thermolabile organic materials. Technology Audit and Production Reserves, 4(4(24), 16–19. https://doi.org/10.15587/2312-8372.2015.47597

Issue

Section

Technologies of food, light and chemical industry