Study of the particles deformation of nickel coatings obtained by the cold gas-dynamic low pressure spraying technology

Authors

  • Орасио Каналес Zhukovsky National Aerospace University «Kharkiv Aviation Institute», Chkalovа str., 17, Kharkiv, Ukraine, 61070, Ukraine https://orcid.org/0000-0003-0563-0223
  • Александр Владимирович Шоринов Zhukovsky National Aerospace University «Kharkiv Aviation Institute», Chkalovа str., 17, Kharkiv, Ukraine, 61070, Ukraine https://orcid.org/0000-0002-5057-6679
  • Андрей Олегович Волков Zhukovsky National Aerospace University «Kharkiv Aviation Institute», Chkalovа str., 17, Kharkiv, Ukraine, 61070, Ukraine https://orcid.org/0000-0002-5899-1252
  • Сергей Евгеньевич Маркович Zhukovsky National Aerospace University «Kharkiv Aviation Institute», Chkalovа str., 17, Kharkiv, Ukraine, 61070, Ukraine https://orcid.org/0000-0001-8321-2786
  • Анатолий Иванович Долматов Zhukovsky National Aerospace University «Kharkiv Aviation Institute», Chkalovа str., 17, Kharkiv, Ukraine, 61070, Ukraine https://orcid.org/0000-0001-5552-8791

DOI:

https://doi.org/10.15587/2312-8372.2015.57173

Keywords:

cold spraying, deformation, dynamic yield strength, coatings, analysis of the microstructure

Abstract

Deformation of the nickel particles during collision of the base surface with cold gas-dynamic spraying at different operating temperatures is studied in the article. The aim of this work is to determine the dynamic yield stress, temperature and plastic work of the particles in the cold spray. Nickel powder coatings on cold spraying device DYMET 405 were covered and the coating microstructure for measuring equivalent strain of the particles for each sample was analyzed to accomplish this aim. It is shown mathematical model to determine deformation parameters, for which one of the data source is founded equivalent deformation of the particles. This article presents the dynamic yield stress of the deformed particles, the calculated temperature in the contact area and the energy balance, with particular attention to the plastic particles. The calculations do not take into account the size of the particles and the deformation of the particles is considered equivalent to the entire coating. The presented method can be applied to studies of any coatings obtained by cold spraying. It can also be used to understand the influence of the parameters on the deposition of the coatings. In this paper it was established a high probability of melting of the particles and the effect of tamping by the ceramic particles of the metal particles to form a coating.

Author Biographies

Орасио Каналес, Zhukovsky National Aerospace University «Kharkiv Aviation Institute», Chkalovа str., 17, Kharkiv, Ukraine, 61070

PhD student

Department of aircraft engines manufacturing 

Александр Владимирович Шоринов, Zhukovsky National Aerospace University «Kharkiv Aviation Institute», Chkalovа str., 17, Kharkiv, Ukraine, 61070

PhD student

Department of aircraft engines manufacturing 

Андрей Олегович Волков, Zhukovsky National Aerospace University «Kharkiv Aviation Institute», Chkalovа str., 17, Kharkiv, Ukraine, 61070

PhD student

Department of aircraft engines manufacturing 

Сергей Евгеньевич Маркович, Zhukovsky National Aerospace University «Kharkiv Aviation Institute», Chkalovа str., 17, Kharkiv, Ukraine, 61070

Candidate of Technical Sciences, Associate Professor

Department of aircraft engines manufacturing

Анатолий Иванович Долматов, Zhukovsky National Aerospace University «Kharkiv Aviation Institute», Chkalovа str., 17, Kharkiv, Ukraine, 61070

Doctor of Technical Sciences, Professor

Department of aircraft engines manufacturing

References

  1. Maev, R., Leshchynsky, V. (2008). Introduction to Low Pressure Gas Dynamic Spray. Weinheim: Wiley-VCH, 234. doi:10.1002/9783527621903
  2. Davis, R. (2004). Handbook of Thermal Spray Technology. ASM International and the Thermal Spray Society, 338.
  3. Assadi, H., Gärtner, F., Stoltenhoff, T., Kreye, H. (2003, September). Bonding mechanism in cold gas spraying. Acta Materialia, Vol. 51, № 15, 4379–4394. doi:10.1016/s1359-6454(03)00274-x
  4. Li, W.-Y., Liao, H., Li, C.-J., Li, G., Coddet, C., Wang, X. (2006, December). On high velocity impact of micro-sized metallic particles in cold spraying. Applied Surface Science, Vol. 253, № 5, 2852–2862. doi:10.1016/j.apsusc.2006.05.126
  5. Grujicic, M., Zhao, C., DeRosset, W., Helfritch, D. (2004, December). Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process. Materials & Design, Vol. 25, № 8, 681–688. doi:10.1016/j.matdes.2004.03.008
  6. Wright, T. W. (1992, January). Shear band susceptibility: Work hardening materials. International Journal of Plasticity, Vol. 8, № 5, 583–602. doi:10.1016/0749-6419(92)90032-8
  7. Wright, T. W. (1994, March). Toward a defect invariant basis for susceptibility to adiabatic shear bands. Mechanics of Materials, Vol. 17, № 2-3, 215–222. doi:10.1016/0167-6636(94)90061-2
  8. Johnson, G. R., Cookm, W. H. (1983). A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures. In: Proceedings of Seventh International Symposium on Ballistics, Vol. 541, 7. The Hague, The Netherlands, 541–548. Available: http://www.lajss.org/HistoricalArticles/A%20constitutive%20model%20and%20data%20for%20metals.pdf
  9. Schoenfeld, S. E., Wright, T. W. (2003, June). A failure criterion based on material instability. International Journal of Solids and Structures, Vol. 40, № 12, 3021–3037. doi:10.1016/s0020-7683(03)00059-3
  10. Dykhuizen, R. C., Smith, M. F. (1998, June 1). Gas Dynamic Principles of Cold Spray. Journal of Thermal Spray Technology, Vol. 7, № 2, 205–212. doi:10.1361/105996398770350945
  11. Grujicic, M., Tong, C., DeRosset, W. S., Helfritch, D. (2003, January 1). Flow analysis and nozzle-shape optimization for the cold-gas dynamic-spray process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 217, № 11, 1603–1613. doi:10.1243/095440503771909980
  12. Koch, C., Ovid'ko, I., Seal, S., Veprek, S. (2007). Structural nanocrystalline materials: fundamentals and applications. Cambridge: Cambridge University Press, 364. doi:10.1017/cbo9780511618840
  13. Jiji, L. (2009). Heat conduction. Ed. 3. Berlin: Springer, 418. doi:10.1007/978-3-642-01267-9
  14. Jodoin, B., Ajdelsztajn, L., Sansoucy, E., Zúñiga, A., Richer, P., Lavernia, E. J. (2006, December). Effect of particle size, morphology, and hardness on cold gas dynamic sprayed aluminum alloy coatings. Surface and Coatings Technology, Vol. 201, № 6, 3422–3429. doi:10.1016/j.surfcoat.2006.07.232
  15. Ning, X.-J., Jang, J.-H., Kim, H.-J. (2007, July). The effects of powder properties on in-flight particle velocity and deposition process during low pressure cold spray process. Applied Surface Science, Vol. 253, № 18, 7449–7455. doi:10.1016/j.apsusc.2007.03.031
  16. Borchers, C., Gärtner, F., Stoltenhoff, T., Kreye, H. (2004). Microstructural bonding features of cold sprayed face centered cubic metals. Journal of Applied Physics, Vol. 96, № 8, 4288–4292. doi:10.1063/1.1789278
  17. Dewar, M. P., McDonald, A. G., Gerlich, A. P. (2011, July 26). Interfacial heating during low-pressure cold-gas dynamic spraying of aluminum coatings. Journal of Materials Science, Vol. 47, № 1, 184–198. doi:10.1007/s10853-011-5786-z
  18. Kanales, O., Litvinov, A. A., Markovich, S. E., Dolmatov, A. I. (2014). Vychislitel'noe modelirovanie gidrodinamiki sopla holodnogo napyleniia nizkogo davleniia. Mekhanika ta mashynobuduvannia, 1, 157–163.
  19. MatWeb. Material properties data base. Available:www.matweb.com
  20. Boyer, H., Gall, T. (1985). Metals Handbook: Desk Edition. ASM International, 1376.

Published

2015-11-26

How to Cite

Каналес, О., Шоринов, А. В., Волков, А. О., Маркович, С. Е., & Долматов, А. И. (2015). Study of the particles deformation of nickel coatings obtained by the cold gas-dynamic low pressure spraying technology. Technology Audit and Production Reserves, 6(3(26), 4–9. https://doi.org/10.15587/2312-8372.2015.57173

Issue

Section

Systems and Control Processes: Original Research