The mathematical simulation of growth and productivity dynamics of cross chickens «Hisex Brown» and «Lohmann Brown»

Authors

  • Елена Александровна Кучер Mykolaiv National University named after V. O. Sukhomlynsky, Str. Nicholas, 24, Mykolaiv, Ukraine, 54030, Ukraine https://orcid.org/0000-0002-9963-6855
  • Мария Валерьевна Пасечник Mykolaiv National University named after V. O. Sukhomlynsky, Str. Nicholas, 24, Mykolaiv, Ukraine, 54030, Ukraine https://orcid.org/0000-0003-3213-9720

DOI:

https://doi.org/10.15587/2312-8372.2016.72833

Keywords:

bird crosses, distribution classes, growth dynamics, laying curve, mathematical models

Abstract

Feasibility of using T. Bridges, A. Putter and L. von Bertalanffy mathematical models to predict and describe the dynamics of the growth of chickens of different crosses and distribution classes, as well as the use of McMilan mathematical model to predict and describe the egg productivity of chicken was studied. It was established that to predict, describe and analyze the age dynamics of bird body weight the most suitable are T. Bridges and A. Putter models. The accuracy of T. Bridges model is within 85,5-93,8 %. Adequacy of A. Putter model is within 96,0-93,8 % when comparing the actually received and theoretically certain indicators of body weight.

T. Bridges model is most suitable to differentiate the two cross chickens, the value of the asymptote (W∞) ranges in 2016,2-2155,5.

A. Putter model can most definitely use to differentiate the three classes of distribution of body weight: for «Hisex Brown» coefficient «ρ» is in the range:
(-0,6156)-(-0,6463), while for «Lohmann Brown» it is much lower:
(-0,7476)-(-0,8627).

Simulation of laying curve using McMilan model revealed contrast in the standards of its recession and increasing with age of layers. An adequacy of the model ranges in 81,2-81,6 %. «Hisex Brown» cross chickens have a delayed rate of egg production decline after the peak than «Lohmann Brown cross chickens». These mathematical models are important because they accurately describe the dynamics of the growth of chickens of different crosses and distribution classes, as well as their laying (the average percentage of deviation does not exceed 5 % threshold judgment on the validity of the data).

Author Biographies

Елена Александровна Кучер, Mykolaiv National University named after V. O. Sukhomlynsky, Str. Nicholas, 24, Mykolaiv, Ukraine, 54030

Candidate of Agricultural Sciences, Associate Professor

Department of Laboratory Diagnostics

Мария Валерьевна Пасечник, Mykolaiv National University named after V. O. Sukhomlynsky, Str. Nicholas, 24, Mykolaiv, Ukraine, 54030

Candidate of Technical Sciences, Associate Professor

Department of Chemistry and Biochemistry

References

  1. Ganesan, R., Dhanavanthan, P., Sreenivasaiah, P. V., Ponnuvel, P. (2011). Comparative study of non-linear models for describing poultry egg production in Puducherry. Current Biotica, Vol. 5, № 3, 289–298.
  2. Kovalenko, V. P., Borodai, V. P., Ponomarenko, N. P. (2007). Selektsiino-henetychni funktsii u ptakhivnytstvi. Visnyk ahrarnoi nauky, 9, 41–43.
  3. Pankova, S. M., Stepanenko, I. A., Kovalenko, H. T. (2009). Otsinka pleminnoi tsinnosti ptytsi z vykorystanniam riznykh metodiv. Ptakhivnytstvo, 63, 81–86.
  4. Ruda, S. V., Katerynych, O. O. (2008). Vykorystannia kryteriiv rostu pry otsintsi hibrydnykh poiednan kurei, shcho otrymani vid batkivskykh form nosiiv hena (DM). Ptakhivnytstvo, 61, 135–140.
  5. Karpenko, O. V. (2009). Udoskonalennia pryiomiv otsinky kurei riznykh napriamiv produktyvnosti za komponentamy nesuchosti. Tavriiskyi naukovyi visnyk, 62, 109–115.
  6. Khomichuk, O. O. (2011). Modeliuvannia nesuchosti ptytsi riznykh krosiv ta klasiv rozpodilu. Zbirnyk naukovykh prats PDATU, 19, 188–189.
  7. Johnston, S. A., Gous, R. M. (2007, April). A mechanistic, stochastic, population model of egg production. British Poultry Science, Vol. 48, № 2, 224–232. doi:10.1080/00071660701227493
  8. Bindya, L. A., Murthy, H. N. N., Jayashanka, M. R., Govindaiah, M. G. (2010, September 1). Mathematical Models for Egg Production in an Indian Colored Broiler Dam Line. International Journal of Poultry Science, Vol. 9, № 9, 916–919. doi:10.3923/ijps.2010.916.919
  9. Savegnago, R. P., Cruz, V. A. R., Ramos, S. B., Caetano, S. L., Schmidt, G. S., Ledur, M. C., El Faro, L., Munari, D. P. (2012, October 22). Egg production curve fitting using nonlinear models for selected and nonselected lines of White Leghorn hens. Poultry Science, Vol. 91, № 11, 2977–2987. doi:10.3382/ps.2012-02277
  10. Prasad, Shiv, Singh, D. P. (2008). Mathematical model for annual egg production curves of chicken. Indian Journal of Poultry Science, Vol. 43, № 3, 293–295.
  11. Hlebova, Yu. A. (2010). Model prohnozuvannia pryrodnoi rezystentnosti yaiechnykh kurei u rannomu ontohenezi. Efektyvne ptakhivnytstvo, 1, 35–38.
  12. Prasad, Shiv, Singh, D. P. (2007). Some alternative forms of logistic-curvilinear model for poultry egg production curves. Indian Journal of Animal Research, 41 (3), 184–187.

Published

2016-07-26

How to Cite

Кучер, Е. А., & Пасечник, М. В. (2016). The mathematical simulation of growth and productivity dynamics of cross chickens «Hisex Brown» and «Lohmann Brown». Technology Audit and Production Reserves, 4(2(30), 38–44. https://doi.org/10.15587/2312-8372.2016.72833

Issue

Section

Mathematical Modeling: Original Research