Investigation of cavitational transformation of motor fuels
DOI:
https://doi.org/10.15587/2312-8372.2016.76528Keywords:
cavitation gasoline processing, octane number, methanol, toluene, hydrogen peroxideAbstract
The object of research is a process of hydrocarbons isomerization and synthesis of oxygen-content organic compounds in the cavitation field. The disadvantage of this method is that the increase in the octane number by 2-5 units does not solve the problem of improving the quality of such straight-run gasoline. To increase the efficiency of cavitation in the article it is proposed to inject hydrogen peroxide in the flow of gasoline. It is known that hydrogen peroxide at dynamic cavitation decomposes into two hydroxyl radicals, which can interact with molecules of alkanes with formation of methanol. Methanol is one of the most common additives that are injected in the composition of low-grade gasoline to improve its quality indicators.
A characteristic feature of the proposed process is that it is only in the cavitation field. Dynamic cavitation is proposed to create cavitation fields.
During the passage of fuel through the reactor cavitation field there is partial destruction of linear hydrocarbons with formation of alkyl radicals and subsequent recombination of radicals. Due to this, there is isomerization of linear hydrocarbons. As a result, the octane number of gasoline after cavitation processing increases by 2-5 units.
The study proved that the gasoline processed by cavitation method with hydrogen peroxide can be used for production internal combustion engines. It is shown that the experiment was able to increase the octane number of gasoline using research method by 14,8 points (from 74,9 to 88,7) and 12,7 using motor method by 12,7 points (from 72,2 to 84,9). Maximum octane number is achieved at a pressure of 19-20 MPa.
References
- Rozovskii, A. Ya., Lin, G. I. (1990). Teoreticheskie osnovy protsessa sinteza metanola. Moscow: Himiia, 272.
- Lebedev, N. N. (1988). Himiia i tehnologiia osnovnogo organicheskogo i neftehimicheskogo sinteza. Moscow: Himiia, 592.
- Shilov, A. E., Shul’pin, G. B. (2002). Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes. Catalysis by Metal Complexes. Kluwer Academic Publishers, 536. doi:10.1007/0-306-46945-6
- Fokin, A. A., Schreiner, P. R. (2002, May). Selective Alkane Transformations via Radicals and Radical Cations: Insights into the Activation Step from Experiment and Theory. Chemical Reviews, Vol. 102, № 5, 1551–1594. doi:10.1021/cr000453m
- Arutiunov, N. S., Krylov, L. V. (2005). Okislitel'naia konversiia metana uspehi himii. Uspehi himii, Vol. 74, № 12, 1216–1274.
- Zamilov, M. F., Godin, S. (2012). Investigation of hydrodynamic cavitation as a means of natural crude oil and synthetic biofuel upgrading. Quantum Potential Corporation, 1–21.
- Tselishtev, A. B., Zaharova, O. I., Loriya, M. G., Zakharov, I. I. (2009). Fiziko-himicheskie osnovy foto-avtokataliticheskogo protsessa okisleniia metana v metanol. Voprosy himii i himicheskoi tehnologi, 4, 43–55.
- Tselishtev, A. B., Zakharov, I. I., Loriya, M. G., Ijagbuji, A. A. (2012). Analiz sposobov aktivatsii metana v «miagkih» usloviiah. Voprosy himii i himicheskoi tehnologii, 2, 39–44.
- Zakharov, I. I., Ijagbuji, A. A., Tselishtev, A. B., Loriya, M. G., Fedotov, R. N. (2015, March). The new pathway for methanol synthesis: Generation of methyl radicals from alkanes. Journal of Environmental Chemical Engineering, Vol. 3, № 1, 405–412. doi:10.1016/j.jece.2014.08.008
- Tselishtev, A. B., Loriya, M. G., Zakharov, I. I. (2011). Analiz fiziko-himicheskih metodov polucheniia gidroksil'nogo radikala. Visnyk Natsionalnoho tekhnichnoho universytetu «KhPI», 65, 111–124.
- Aseev, D. G., Kenzhin, R. M., Stoianovskii, V. O., Batoeva, A. A., Volodin, A. M. (2011). Detektirovanie ON radikalov v protsesse gidrodinamicheskoi kavitatsii i v sonoreaktore liuministsentnymi metodami. Tezisy XXIII simpoziuma «Sovremennaia himicheskaia fizika», 23 sentiabria-04 oktiabria 2011 g. Tuapse: MGU, 81–83.
- Tselishtev, A. B., Zakharov, I. I., Loriya, M. G., Ijagbuji, A. A., Eliseev, P. I., Nosach, V. A. (2014). Motornye topliva: Kavitatsionnyi Sposob Povysheniia ih kachestva. Khimichna promyslovist Ukrainy, № 2, Vol. 121, 39–42.
- Loriya, M. G., Ijagbuji, A. A., Tselishtev, A. B., Zakharov, I. I. (2013, February). Autocatalytic Photo-Oxidation Process of C3-C4 Fraction to Methanol. Advanced Materials Research, Vol. 660, 51–56. doi:10.4028/www.scientific.net/amr.660.51
- NIST Standard Reference Database Number 69. NIST Chemistry WebBook. Available: http://webbook.nist.gov/chemistry
- Landau, L. D., Lifshits, E. M. (1986). Teoreticheskaia fizika. Vol. 6. Gidrodinamika. Moscow: Nauka, 503–506.
- Abramovich, G. N. (1991). Prikladnaia gazovaia dinamika. Moscow: Nauka, 600.
- Han, L.-B., Tsubota, S., Haruta, M. (1995, October). Effect of the Addition of Nitrogen Dioxide on the Gas-Phase Partial Oxidation of Methane with Oxygen under Normal Pressures. Chemistry Letters, Vol. 24, № 10, 931–932. doi:10.1246/cl.1995.931
- Taylor, C. E. (2003, August). Methane conversion via photocatalytic reactions. Catalysis Today, Vol. 84, № 1-2, 9–15. doi:10.1016/s0920-5861(03)00295-5
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Марина Геннадіївна Лорія, Олексій Борисович Целіщев, Володимир Олександрович Носач
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.