Simulation of development dynamics for management improvement of enterprise specialization

Authors

  • Тетяна Володимирівна Власенко Kharkiv National Technical University of Agriculture Petro Vasilenko, Str. Alchevsk 44, Kharkiv, Ukraine, 61000, Ukraine https://orcid.org/0000-0002-0862-9175
  • Віталій Михайлович Власовець Kharkiv National Technical University of Agriculture Petro Vasilenko, Str. Alchevsk 44, Kharkiv, Ukraine, 61000, Ukraine https://orcid.org/0000-0003-4220-205X

DOI:

https://doi.org/10.15587/2312-8372.2016.81463

Keywords:

enterprise management processes, management of production specialization, development dynamics, method of statistical equations of dependencies

Abstract

Using of the data analysis results of the enterprise development dynamics for management improvement of its specialization allows to prove an influence of the main factors and to set their optimal level for maximum efficiency. A limited set of data and usually functional relationship between them are typical for dynamics data of individual factors characteristic of real enterprises. This leads to significant errors in predicting performance indicators using traditional methods of research. This article is first established the feasibility of the method of statistical equations of dependencies in simulation of development dynamics to improve the management of agricultural enterprise specialization. Effective indicators of economic and financial activities with appropriate focus on best value of formed factors (the maximum for the stimulant performance yield and minimum for antistimulant performances – harvested area and manufacturing cost) are found. It is established that for an increase in growing profitability of 10 % it is necessary to lay the slowdown of such factors as the production cost at 4,11 % and reduce harvested area at 7,96 %. At the same time it is necessary to intensify the impact of yield at 7,60 %. An increase in productivity of 25 hundred kilograms per hectare will increase profitability in 2,31 times compared to the previous year. Conducted research identifies the main technological reserve of production ensuring optimal yield of 20,28 hundred kilograms per hectare, which will maximize profitability to 31,19 %. The research results can be used by experts to developing models of management processes.

Author Biographies

Тетяна Володимирівна Власенко, Kharkiv National Technical University of Agriculture Petro Vasilenko, Str. Alchevsk 44, Kharkiv, Ukraine, 61000

Senior Lecturer

Department of manufacturing, business and management

Віталій Михайлович Власовець, Kharkiv National Technical University of Agriculture Petro Vasilenko, Str. Alchevsk 44, Kharkiv, Ukraine, 61000

Senior Lecturer

Department of manufacturing, business and management

References

  1. Dobbelaere, S., Mairesse, J. (2011). Panel data estimates of the production function and product and labor market imperfections. Journal of Applied Econometrics, Vol. 28, № 1, 1–46. doi:10.1002/jae.1256
  2. Lissitsa, A., Odening, M. (2005). Efficiency and total factor productivity in Ukrainian agriculture in transition. Agricultural Economics, Vol. 32, № 3, 311–325. doi:10.1111/j.1574-0862.2005.00062.x
  3. Vlasenko, T. V., Barchan, K. M. (2007). Marketingova strategiya pidpriemstva u suchasnikh umovakh. Visnik SNT, 2, 10‑12.
  4. Hervé, M., Albert, C. H., Bondeau, A. (2016). On the importance of taking into account agricultural practices when defining conservation priorities for regional planning. Journal for Nature Conservation, 33, 76–84. doi:10.1016/j.jnc.2016.08.001
  5. Vlasenko, T. V. (2007). Ekonomichne ozinuvannya vzaemovplivu osnovnikh chinnikiv formuvannya obsyagu valovoi produkzii silskogo gospodarstva v Kharkivskiy oblasti. Nauka i ekonomika, 2 (6), 25‑35.
  6. Levers, C., Butsic, V., Verburg, P. H., Müller, D., Kuemmerle, T. (2016). Drivers of changes in agricultural intensity in Europe. Land Use Policy, 58, 380–393. doi:10.1016/j.landusepol.2016.08.013
  7. Baumöhl, E., Lyócsa, Š. (2014). Volatility and dynamic conditional correlations of worldwide emerging and frontier markets. Economic Modelling, 38, 175–183. doi:10.1016/j.econmod.2013.12.022
  8. Pouliot, W. (2016). Robust tests for change in intercept and slope in linear regression models with application to manager performance in the mutual fund industry. Economic Modelling, 58, 523–534. doi:10.1016/j.econmod.2016.03.011
  9. Millstein, M. A., Yang, L., Li, H. (2014). Optimizing ABC inventory grouping decisions. International Journal of Production Economics, 148, 71–80. doi:10.1016/j.ijpe.2013.11.007
  10. Leamer, E. E. (2016). S-values: Conventional context-minimal measures of the sturdiness of regression coefficients. Journal of Econometrics, Vol. 193, № 1, 147–161. doi:10.1016/j.jeconom.2015.10.013
  11. Skoblo, T. S., Vlasovets, V. M., Moroz, V. V. (2001). Structure and distribution of components in the working layer upon reconditioning of parts by electric-arc metallization. Metal Science and Heat Treatment, Vol. 43, № 11/12, 497‑500. doi:10.1023/a:1014857107509
  12. Skoblo, T. S., Vlasovets, V. М. (2012). Specific Features of the Formation of Structures in 60Kh2N4GМF Precipitation-Hardening Steel. Materials Science, Vol. 47, № 5, 644–650. doi:10.1007/s11003-012-9439-4
  13. Godoy, J. L., González, A. H., Normey-Rico, J. E. (2016). Constrained latent variable model predictive control for trajectory tracking and economic optimization in batch processes. Journal of Process Control, 45, 1–11. doi:10.1016/j.jprocont.2016.06.005
  14. Kharchenko, U. A. (2014). Koreliatsiino-rehresiinyi analiz obsiahiv zbutu produktsii promyslovoho pidpryiemstva. Ekonomichnyi prostir, 86, 214‑223.
  15. Kulynych, O. I., Kulynych, R. O. (2014). Statystychni metody prohnozuvannia makroekonomichnykh pokaznykiv ta sposoby yikh otsinky. Universytetski naukovi zapysky, 4, 283–295.
  16. Kulynych, R. O. (2008). Vykorystannia statystychnykh metodiv dlia otsiniuvannia vplyvu okremykh form orhanizatsii silskohospodarskoho vyrobnytstva na yoho intensyfikatsiiu. Universytetski naukovi zapysky, 3, 477–485.

Published

2016-09-29

How to Cite

Власенко, Т. В., & Власовець, В. М. (2016). Simulation of development dynamics for management improvement of enterprise specialization. Technology Audit and Production Reserves, 5(4(31), 9–15. https://doi.org/10.15587/2312-8372.2016.81463