Розробка нейронної мережі для прогнозування пасажиропотоків в громадському електротранспорті розумного міста

Автор(и)

  • Юрій Романович Мацелюх Національний університет «Львівська політехніка», Україна https://orcid.org/0000-0002-1721-7703
  • Василь Володимирович Литвин Національний університет «Львівська політехніка», Україна https://orcid.org/0000-0002-9676-0180
  • Мирослава Іванівна Бублик Національний університет «Львівська політехніка», Україна https://orcid.org/0000-0003-2403-0784

DOI:

https://doi.org/10.15587/2706-5448.2025.339550

Ключові слова:

пасажиропотік, нейронна мережа, LSTM, громадський транспорт, розумне місто, моделювання залишків

Анотація

Об’єктом дослідження є гібридна модель глибокого навчання для прогнозування пасажиропотоків. Пасажиропотоки є складними часовими рядами, на які впливає поєднання часових, просторових та операційних факторів. Дослідження розглядає фундаментальну невідповідність між стохастичним попитом пасажирів та статичною пропозицією транспортних послуг. Ця невідповідність призводить до операційної неефективності та зниження якості обслуговування пасажирів. Відсутність точних інструментів прогнозування перешкоджає оптимальному щоденному розподілу рухомого складу, обмежуючи ефективність транспортних операторів.

Була розроблена та перевірена гібридна модель глибокого навчання для прогнозування щоденних пасажиропотоків з високою точністю (R² = 0,91). Результати значно перевершують базові моделі та підходи, описані в наукових джерелах. Ця ефективність досягається складною стратегією, що поєднує вдосконалену інженерію ознак, що включає використання циклічних, затримуваних та ковзних середніх ознак. Цей підхід був поєднаний із моделюванням залишків, що дозволило нейронній мережі фіксувати складні нелінійні відхилення. Крім того, надійні методи підготовки даних забезпечили можливість досягти високого рівня узагальнення моделі.

Результати дослідження демонструють, що запропонована нейронна мережа є ефективним інструментом для операційного планування. Результати роботи нейронної мережі сприяють оптимізації розподілу рухомого складу та покращують використання ресурсів. Як наслідок, це підвищує комфорт пасажирів, сприяючи сталому розвитку міської мобільності. Для практичного застосування модель вимагає вірогідних історичних даних про пасажиропотік. Це дозволяє операторам зменшити економічні втрати від недостатньо завантажених транспортних засобів та запобігти переповненню у дні високого попиту.

Біографії авторів

Юрій Романович Мацелюх, Національний університет «Львівська політехніка»

Аспірант

Кафедра інформаційних систем та мереж

Василь Володимирович Литвин, Національний університет «Львівська політехніка»

Доктор технічних наук

Кафедра інформаційних систем та мереж

Мирослава Іванівна Бублик, Національний університет «Львівська політехніка»

Доктор економічних наук

Кафедра менеджменту і міжнародного підприємництва

Посилання

  1. Himanen, V., Nijkamp, P., Padjen, J. (1992). Environmental quality and transport policy in Europe. Transportation Research Part A: Policy and Practice, 26 (2), 147–157. https://doi.org/10.1016/0965-8564(92)90009-v
  2. Matseliukh, Y., Bublyk, M., Bosak, A., Naychuk-Khrushch, M. (2024). The role of public transport network optimization in reducing carbon emissions. CEUR Workshop Proceedings, 3723, 340–364. Available at: https://ceur-ws.org/Vol-3723/paper19.pdf
  3. Liyanage, S., Abduljabbar, R., Dia, H., Tsai, P.-W. (2022). AI-based neural network models for bus passenger demand forecasting using smart card data. Journal of Urban Management, 11 (3), 365–380. https://doi.org/10.1016/j.jum.2022.05.002
  4. Matseliukh, Y., Lytvyn, V., Bublyk, M. (2025). K-means clustering method in organizing passenger transportation in a smart city. CEUR Workshop Proceedings, 3983, 219–240. https://doi.org/10.31110/colins/2025-2/017
  5. Fornalchyk, Y., Koda, E., Kernytskyy, I., Hrytsun, O., Royko, Y., Bura, R. et al. (2023). Wpływ natężenia ruchu pojazdów na zachowanie przechodniów na przejściach bez sygnalizacji. Roads and Bridges – Drogi i Mosty, 22 (2), 201–219. https://doi.org/10.7409/rabdim.023.010
  6. Ouyang, Q., Lv, Y., Ma, J., Li, J. (2020). An LSTM-Based Method Considering History and Real-Time Data for Passenger Flow Prediction. Applied Sciences, 10 (11), 3788. https://doi.org/10.3390/app10113788
  7. Katrenko, A., Krislata, I., Veres, O., Oborska, O., Basyuk, T., Vasyliuk, A. et al. (2020). Development of traffic flows and smart parking system for smart city. CEUR Workshop Proceedings, 2604, 730–745. Available at: http://ceur-ws.org/Vol-2604/paper50.pdf
  8. Postranskyy, T., Afonin, M., Boikiv, M., Bura, R. (2024). Identifying patterns of change in traffic flows’ parameters depending on the organization of public transport movement. Eastern-European Journal of Enterprise Technologies, 5 (3 (131)), 72–81. https://doi.org/10.15587/1729-4061.2024.313636
  9. Fornalchyk, Y., Kernytskyy, I., Hrytsun, O., Royko, Y. (2021). Choice of the rational regimes of traffic light control for traffic and pedestrian flows. Scientific Review Engineering and Environmental Studies (SREES), 30 (1), 38–50. https://doi.org/10.22630/pniks.2021.30.1.4
  10. Fu, R., Zhang, Z., Li, L. (2016). Using LSTM and GRU neural network methods for traffic flow prediction. 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), 324–328. https://doi.org/10.1109/yac.2016.7804912
  11. Makridakis, S., Spiliotis, E., Assimakopoulos, V. (2020). The M4 Competition: 100,000 time series and 61 forecasting methods. International Journal of Forecasting, 36 (1), 54–74. https://doi.org/10.1016/j.ijforecast.2019.04.014
  12. Matseliukh, Y., Bublyk, M., Vysotska, V. (2021). Development of intelligent system for visual passenger flows simulation of public transport in smart city based on neural network. CEUR Workshop Proceedings, 2870, 1087–1138. Available at: http://ceur-ws.org/Vol-2870/paper82.pdf
  13. Podlesna, L., Bublyk, M., Grybyk, I., Matseliukh, Y., Burov, Y., Kravets, P. et al. (2020). Optimization model of the buses number on the route based on queuing theory in a Smart City. CEUR Workshop Proceedings, 2631, 502–515. Available at: http://ceur-ws.org/Vol-2631/paper37.pdf
  14. Xiong, Z., Zheng, J., Song, D., Zhong, S., Huang, Q. (2019). Passenger Flow Prediction of Urban Rail Transit Based on Deep Learning Methods. Smart Cities, 2 (3), 371–387. https://doi.org/10.3390/smartcities2030023
  15. Goodfellow, I., Bengio, Y., Courville, A. (Eds.) (2016). Deep Learning. MIT Press, 800. Available at: https://mitpress.ublish.com/ebook/deep-learning-preview/107/26
  16. Pei, Y., Ran, S., Wang, W., Dong, C. (2023). Bus-Passenger-Flow Prediction Model Based on WPD, Attention Mechanism, and Bi-LSTM. Sustainability, 15 (20), 14889. https://doi.org/10.3390/su152014889
  17. Fornalchyk, Y., Vikovych, I., Royko, Y., Hrytsun, O. (2021). Improvement of methods for assessing the effectiveness of dedicated lanes for public transport. Eastern-European Journal of Enterprise Technologies, 1 (3 (109)), 29–37. https://doi.org/10.15587/1729-4061.2021.225397
  18. Zhang, J., Chen, F., Cui, Z., Guo, Y., Zhu, Y. (2021). Deep Learning Architecture for Short-Term Passenger Flow Forecasting in Urban Rail Transit. IEEE Transactions on Intelligent Transportation Systems, 22 (11), 7004–7014. https://doi.org/10.1109/tits.2020.3000761
  19. Cui, H., Si, B., Wang, J., Zhao, B., Pan, W. (2024). Short-term origin–destination flow prediction for urban rail network: a deep learning method based on multi-source big data. Complex & Intelligent Systems, 10 (4), 4675–4696. https://doi.org/10.1007/s40747-024-01391-6
  20. Boikiv, M., Postranskyy, T., Afonin, M. (2022). Establishing patterns of change in the efficiency of regulated intersection operation considering the permitted movement directions. Eastern-European Journal of Enterprise Technologies, 4 (3 (118)), 17–26. https://doi.org/10.15587/1729-4061.2022.262250
  21. An, J., Zhao, J., Liu, Q., Qian, X., Chen, J. (2023). Self-Constructed Deep Fuzzy Neural Network for Traffic Flow Prediction. Electronics, 12 (8), 1885. https://doi.org/10.3390/electronics12081885
  22. Liu, S., Du, L., Cao, T., Zhang, T. (2024). Research on a Passenger Flow Prediction Model Based on BWO-TCLS-Self-Attention. Electronics, 13 (23), 4849. https://doi.org/10.3390/electronics13234849
  23. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P. S. (2021). A Comprehensive Survey on Graph Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 32 (1), 4–24. https://doi.org/10.1109/tnnls.2020.2978386
  24. Baghbani, A., Rahmani, S., Bouguila, N., Patterson, Z. (2023). Predicting Passenger Flow Using Graph Neural Networks with Scheduled Sampling on Bus Networks. 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 3073–3078. https://doi.org/10.1109/itsc57777.2023.10422701
  25. Chang, Y., Zong, M., Dang, Y., Wang, K. (2024). Multi-Step Passenger Flow Prediction for Urban Metro System Based on Spatial-Temporal Graph Neural Network. Applied Sciences, 14 (18), 8121. https://doi.org/10.3390/app14188121
  26. Shi, B., Wang, Z., Yan, J., Yang, Q., Yang, N. (2024). A Novel Spatial–Temporal Deep Learning Method for Metro Flow Prediction Considering External Factors and Periodicity. Applied Sciences, 14 (5), 1949. https://doi.org/10.3390/app14051949
  27. Chukhray, N., Shakhovska, N., Mrykhina, O., Bublyk, M., Lisovska, L. (2019). Consumer aspects in assessing the suitability of technologies for the transfer. 2019 IEEE 14th International Conference on Computer Sciences and Information Technologies (CSIT), 142–147. https://doi.org/10.1109/stc-csit.2019.8929879
  28. Bublyk, M., Matseliukh, Y. (2021). Small-batteries utilization analysis based on mathematical statistics methods in challenges of circular economy. CEUR Workshop Proceedings, 2870, 1594–1603. Available at: https://ceur-ws.org/Vol-2870/paper118.pdf
  29. Bublyk, M., Lytvyn, V., Vysotska, V., Chyrun, L., Matseliukh, Y., Sokulska, N. (2020). The decision tree usage for the results analysis of the psychophysiological testing. CEUR Workshop Proceedings, 2753, 458–472. Available at: https://ceur-ws.org/Vol-2753/paper31.pdf
  30. Matseliukh, Y., Vysotska, V., Bublyk, M., Kopach, T., Korolenko, O. (2021). Network modelling of resource consumption intensities in human capital management in digital business enterprises by the critical path method. CEUR Workshop Proceedings, 2851, 366–380. Available at: https://ceur-ws.org/Vol-2851/paper34.pdf
  31. Vysotska, V., Bublyk, M., Vysotsky, A., Berko, A., Chyrun, L., Doroshkevych, K. (2020). Methods and Tools for Web Resources Processing in E-Commercial Content Systems. 2020 IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT), 114–118. https://doi.org/10.1109/csit49958.2020.9321950
Development of a neural network for forecasting passenger flows in smart city public electric transport

##submission.downloads##

Опубліковано

2025-09-22

Як цитувати

Мацелюх, Ю. Р., Литвин, В. В., & Бублик, М. І. (2025). Розробка нейронної мережі для прогнозування пасажиропотоків в громадському електротранспорті розумного міста. Technology Audit and Production Reserves, 5(2(85), 20–25. https://doi.org/10.15587/2706-5448.2025.339550

Номер

Розділ

Системи та процеси керування