Study of hepatotoxins influence in vitro on basic biochemical indicators of liver functional state

Authors

DOI:

https://doi.org/10.15587/2519-8025.2021.250223

Keywords:

carbon tetrachloride, ciprofloxacin, rat hepatocytes, cytolysis enzymes

Abstract

An antimicrobial drug of the fluoroquinolone group, ciprofloxacin, is widely used in Ukraine. However, some researchers have noted the probable hepatotoxicity of this drug with prolonged use or use of high doses of ciprofloxacin. The aim of this study was to compare the effects of carbon tetrachloride, as a classical model of hepatocyte injury, with the effects of ciprofloxacin.

The aim of the study was to investigate the biochemical parameters of the liver when simulating toxic damage to hepatocytes with carbon tetrachloride or ciprofloxacin.

Materials and methods. The study was carried out on isolated rat hepatocytes, in whose culture medium carbon tetrachloride or ciprofloxacin was added. After incubation in the supernatant and cell homogenate, the activities of marker enzymes of cytolysis were determined: ALT, AST, γ-GTP, LF, LDH, DC and MDA.

Results. The introduction of ciprofloxacin into the culture of hepatocytes at a concentration of LC50 caused changes in biochemical parameters similar to those caused by carbon tetrachloride. Thus, an increase in ALT, AST, γ-GTP, LF, LDH, DC and MDA was observed when CCl4 or ciprofloxacin was added to the culture.

Conclusion. Incubation of rat hepatocytes with carbon tetrachloride or ciprofloxacin caused an increase in the level of enzymes and lipid peroxidation products. These parameters are indicators of gross changes in cells, which are the result of impaired keto acid formation, impaired redox reactions, impaired glycogen production

Author Biographies

Liudmyla Maloshtan, National University of Pharmacy

Doctor of Biological Sciences, Professor

Department of Biological Chemistry

Galyna Storozhenko, National University of Pharmacy

PhD, Assistant

Department of Biological Chemistry

Liubov Galuzinska, National University of Pharmacy

PhD, Associate Professor

Department of Biological Chemistry

Victoriia Fylymonenko, National University of Pharmacy

PhD, Associate Professor

Department of Biological Chemistry

Omar Rashid Sadiq, Arab American University

Associate Professor, Dean's Assistant, Director of Faculty

Department of Clinical Pharmacology and Therapeutics

Biomedical Sciences Faculty of Medicine

References

  1. Mohi-ud-din, R., Mir, R. H., Sawhney, G., Dar, M. A., Bhat, Z. A. (2019). Possible Pathways of Hepatotoxicity Caused by Chemical Agents. Current Drug Metabolism, 20 (11), 867–879. doi: http://doi.org/10.2174/1389200220666191105121653
  2. Unsal, V., Cicek, M., Sabancilar, İ. (2020). Toxicity of carbon tetrachloride, free radicals and role of antioxidants. Reviews on Environmental Health, 36 (2), 279–295. doi: http://doi.org/10.1515/reveh-2020-0048
  3. Li, X., Chen, Y., Ye, W., Tao, X., Zhu, J., Wu, S., Lou, L. (2015). Experimental research Blockade of CCN4 attenuates CCl 4 -induced liver fibrosis. Archives of Medical Science, 3, 647–653. doi: http://doi.org/10.5114/aoms.2015.52371
  4. Liu, H. H., Li, A. J. (2020). MiR-340 suppresses CCl4-induced acute liver injury through exerting anti-inflammation targeting Sigirr. European review for medical and pharmacological sciences, 24 (20), 10687–10695. doi: https://doi.org/10.26355/eurrev_202010_23427
  5. Weber, L. W. D., Boll, M., Stampfl, A. (2003). Hepatotoxicity and Mechanism of Action of Haloalkanes: Carbon Tetrachloride as a Toxicological Model. Critical Reviews in Toxicology, 33 (2), 105–136. doi: http://doi.org/10.1080/713611034
  6. Ahmad, W., Waqar, M., Hadi, M. H., Muhammad, A. S., Iqbal, N. (2021). Acute Cholestatic Liver Injury Due to Ciprofloxacin in a Young Healthy Adult. Cureus, 13 (2). doi: http://doi.org/10.7759/cureus.13340
  7. Koutsandrea, C. N., Miceli, M. V., Peyman, G. A., Farahat, H. G., Niesman, M. R. (1991). Ciprofloxacin and dexamethasone inhibit the proliferation of human retinal pigment epithelial cells in culture. Current Eye Research, 10 (3), 249–258. doi: http://doi.org/10.3109/02713689109003447
  8. Dong, S., Chen, Q.-L., Song, Y.-N., Sun, Y., Wei, B., Li, X.-Y. et. al. (2016). Mechanisms of CCl4-induced liver fibrosis with combined transcriptomic and proteomic analysis. The Journal of Toxicological Sciences, 41 (4), 561–572. doi: http://doi.org/10.2131/jts.41.561
  9. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury (2012). National Institute of Diabetes and Digestive and Kidney Diseases. Ciprofloxacin. Available at: https://www.ncbi.nlm.nih.gov/books/NBK548066/
  10. Zimpfer, A., Propst, A., Mikuz, G., Vogel, W., Terracciano, L., Stadlmann, S. (2004). Ciprofloxacin-induced acute liver injury: case report and review of literature. Virchows Archiv, 444 (1), 87–89. doi: http://doi.org/10.1007/s00428-003-0917-9
  11. Goetz, M., Galle, P. R., Schwarting, A. (2003). Non-Fatal Acute Liver Injury Possibly Related to High-Dose Ciprofloxacin. European Journal of Clinical Microbiology and Infectious Diseases, 22 (5), 294–296. doi: http://doi.org/10.1007/s10096-003-0914-6
  12. Unger, C., Al-Jashaami, L. S. (2016). Ciprofloxacin Exposure Leading to Fatal Hepatotoxicity: An Unusual Correlation. American Journal of Case Reports, 17, 676–681. doi: http://doi.org/10.12659/ajcr.899080
  13. Petrenko, A. Iu., Sukach, A. N., Rosliakov, A. D. (1991). Vydelenie gepatotsitov krys nefermentativnym metodom: detoksikatsionnaia i dykhatelnaia aktivnosti. Biokhimiia, 56 (9), 1647–1650.
  14. Freshney, I. (2001). Application of cell cultures to toxicology. Cell biology and toxicology, 17 (4-5), 213–230. doi: https://doi.org/10.1023/a:1012572930721
  15. Gavrilov, V. B., Mishkorudnaia, M. I. (1989). Spektrofotometricheskoe opredelenie soderzhaniia gidroperekisei lipidov v plazme krovi. Laboratornaia diagnostika ishemicheskoi bolezni serdtsa. Kyiv: Zdorov’ia, 170–171.
  16. Korobeinikova, E. N. (1989). Modifikatsiia opredeleniia produktov POL v reaktsii s tiobarbiturovoi kislotoi. Laboratornoe delo, 7, 8–10.
  17. Rahmani, A. H., Almatroudi, A., Babikr, A. Y., Ali Khan, A., Alsahli, M. A. (2019). Thymoquinone, an Active Constituent of Black Seed Attenuates CCl4 Induced Liver Injury in Mice via Modulation of Antioxidant Enzymes, PTEN, P53 and VEGF Protein. Open Access Macedonian Journal of Medical Sciences, 7 (3), 311–317. doi: http://doi.org/10.3889/oamjms.2019.050
  18. Koyama, T., Hamada, H., Nishida, M., Naess, P. A., Gaarder, C., Sakamoto, T. (2016). Defining the optimal cut-off values for liver enzymes in diagnosing blunt liver injury. BMC Research Notes, 9 (1). doi: http://doi.org/10.1186/s13104-016-1863-3
  19. Lehmann-Werman, R., Magenheim, J., Moss, J., Neiman, D., Abraham, O., Piyanzin, S. et. al. (2018). Monitoring liver damage using hepatocyte-specific methylation markers in cell-free circulating DNA. JCI Insight, 3 (12). doi: http://doi.org/10.1172/jci.insight.120687
  20. Pareek, A., Godavarthi, A., Issarani, R., Nagori, B. P. (2013). Antioxidant and hepatoprotective activity of Fagonia schweinfurthii (Hadidi) Hadidi extract in carbon tetrachloride induced hepatotoxicity in HepG2 cell line and rats. Journal of Ethnopharmacology, 150 (3), 973–981. doi: http://doi.org/10.1016/j.jep.2013.09.048
  21. Demiroren, K., Basunlu, M. T., Erten, R., Cokluk, E. (2018). A comparison of the effects of thymoquinone, silymarin and N-acetylcysteine in an experimental hepatotoxicity. Biomedicine & Pharmacotherapy, 106, 1705–1712. doi: http://doi.org/10.1016/j.biopha.2018.07.125

Downloads

Published

2021-12-30

How to Cite

Maloshtan, L., Storozhenko, G., Galuzinska, L., Fylymonenko, V., & Sadiq, O. R. (2021). Study of hepatotoxins influence in vitro on basic biochemical indicators of liver functional state. ScienceRise: Biological Science, (4 (29), 15–18. https://doi.org/10.15587/2519-8025.2021.250223

Issue

Section

Biological research