Level of Cyclin D1 protein in peripheral blood lymphocytes of Chornobyl clean-up workers in remote period after radiation exposure

Authors

  • Liliia Zvarych State Institution "National Research Center for Radiation Medicine of National Academy of Medical Sciences of Ukraine" Yuriia Illienko str., 53, Kyiv, Ukraine, 04050, Ukraine https://orcid.org/0000-0003-1805-1319
  • Nataliya Golyarnik State Institution "National Research Center for Radiation Medicine of National Academy of Medical Sciences of Ukraine" Yuriia Illienko str., 53, Kyiv, Ukraine, 04050, Ukraine https://orcid.org/0000-0002-8760-5859
  • Iryna Ilienko State Institution "National Research Center for Radiation Medicine of National Academy of Medical Sciences of Ukraine" Yuriia Illienko str., 53, Kyiv, Ukraine, 04050, Ukraine https://orcid.org/0000-0003-4405-0328

DOI:

https://doi.org/10.15587/2519-8025.2019.165703

Keywords:

Cyclin D1, cellular cycle, genome instability, lymphocytes, ionizing irradiation, CAES accident

Abstract

Aim: to assess changes of products of Cyclin D1 protein in lymphocytes of peripheral blood of Chernobyl clean-up workers as remote results of the action of ionizing irradiation.   

Methods: there were examined 120 Chernobyl clean-up workers in the remote period after radiation exposure and 45 persons of the control group. For assessing mitogen-induced levels of Cyclin D1, the micro-method of cultivating erythrocytes of whole blood was used. The quantitative assessment of the spontaneous and mitogen-induced levels of Cyclin D1 in lymphocytes of peripheral blood (PB) was realized using the reagents FITC Mouse Anti-Human Cyclin D1 Antibody Set (BD, USA) by the method of flow cytometry.

Research results: there was determined the dose-dependent increase of the spontaneous level of Cyclin D1 in PB lymphocytes of Chornobyl clean-up workers. High values of the parameter were established in the subgroup of Chornobyl clean-up workers, irradiated in the diapason of doses as 500-1000 mSv. Maximal values of Cyclin D1 level in PB lymphocytes were observed in Chornobyl clean-up workers at exacerbation of the bronchial-pulmonary pathology, bronchial asthma in anamnesis and in reconvalescents of acute radiation sickness with the radiation doses D ≥ 500 mSv. After mitogen stimulation of lymphocytes, there was noted the decrease of Cyclin D1 level in the group of Chornobyl clean-up workers and the increase in persons of the control group.

Conclusions: the research revealed the differences in products of Cyclin D1 in PB lymphocytes of Chornobyl clean-up workers and persons of the control group.  The revealed changes of the spontaneous and mitogen-induced levels of Cyclin D1 in PB lymphocytes of Chornobyl clean-up workers with the somatic pathology reflect disorders in regulation processes of proliferation and cellular cycle. The obtained data add ideas about mechanisms of the radiation-induced disorder of the cellular cycle that may be a manifestation of genome instability and become a trigger factor of carcinogenesis in the remote period after radiation exposure

Author Biographies

Liliia Zvarych, State Institution "National Research Center for Radiation Medicine of National Academy of Medical Sciences of Ukraine" Yuriia Illienko str., 53, Kyiv, Ukraine, 04050

Laboratory Assistant

Laboratory of Immunocytology

Institute of Clinical Radiology

Nataliya Golyarnik, State Institution "National Research Center for Radiation Medicine of National Academy of Medical Sciences of Ukraine" Yuriia Illienko str., 53, Kyiv, Ukraine, 04050

PhD, Senior Researcher

Laboratory of Immunocytology

Institute of Clinical Radiology

Iryna Ilienko, State Institution "National Research Center for Radiation Medicine of National Academy of Medical Sciences of Ukraine" Yuriia Illienko str., 53, Kyiv, Ukraine, 04050

Doctor of Biological Sciences, Head of Laboratory

Laboratory of Immunocytology

Institute of Clinical Radiology

References

  1. Guerra, L., Cortes-Bratti, X., Guidi, R., Frisan, T. (2011). The Biology of the Cytolethal Distending Toxins. Toxins, 3 (3), 172–190. doi: http://doi.org/10.3390/toxins3030172
  2. Saini, D., Shelke, S., Mani Vannan, A., Toprani, S., Jain, V., Das, B., Seshadri, M. (2012). Transcription profile of DNA damage response genes at G0 lymphocytes exposed to gamma radiation. Molecular and Cellular Biochemistry, 364 (1-2), 271–281. doi: http://doi.org/10.1007/s11010-012-1227-9
  3. Tewari, S., Khan, K., Husain, N., Rastogi, M., Mishra, S. P., Srivastav, A. K. (2016). Peripheral Blood Lymphocytes as In Vitro Model to Evaluate Genomic Instability Caused by Low Dose Radiation. Asian Pacific Journal of Cancer Prevention, 17 (4), 1773–1777. doi: http://doi.org/10.7314/apjcp.2016.17.4.1773
  4. Ilyenko, I. M., Bazyka, D. A., Chumak, S. A., Lohanovskyi, K. M. (2012). Osoblyvosti ekspresii heniv-rehuliatoriv apoptozu ta klitynnoho tsyklu limfotsytiv peryferychnoi krovi pry porushenniakh kohnityvnykh funktsii u uchasnykiv likvidatsii naslidkiv avarii na Chornobylskii AES. Problemy radiatsiinoi medytsyny ta radiobiolohii, 17, 163–176.
  5. Wang, H.-Y., Chen, Y.-B., Gong, S.-L., Qu, L. (2012). The expression of β-catenin, cyclin D1 and c-myc mRNA on thymus tissue exposed irradiation. 2012 International Conference on Biomedical Engineering and Biotechnology. Macao, 1822–1825. doi: http://doi.org/10.1109/icbeb.2012.425
  6. Mahdey, H. M., Ramanathan, A., Ismail, S. M., Abraham, M. T., Jamaluddin, M., Zain, R. B. (2011). Cyclin D1 Amplification in Tongue and Cheek Squamous Cell Carcinomas. Asian Pacific Journal of Cancer Prevention, 12 (9), 2199–2204.
  7. Casimiro, M. C., Velasco-Velázquez, M., Aguirre-Alvarado, C., Pestell, R. G. (2014). Overview of cyclins D1 function in cancer and the CDK inhibitor landscape: past and present. Expert Opinion on Investigational Drugs, 23 (3), 295–304. doi: http://doi.org/10.1517/13543784.2014.867017
  8. Jirawatnotai, S., Hu, Y., Livingston, D. M., Sicinski, P. (2012). Proteomic identification of a direct role for cyclin d1 in DNA damage repair. Cancer Research, 72 (17), 4289–4293. doi: http://doi.org/10.1158/0008-5472.can-11-3549
  9. Hitomi, M., Yang, K., Stacey, A. W., Stacey, D. W. (2008). Phosphorylation of cyclin D1 regulated by ATM or ATR controls cell cycle progression. Molecular and Cellular Biology, 28 (17), 5478–5493. doi: http://doi.org/10.1128/mcb.02047-07
  10. Shimura, T., Kobayashi, J., Komatsu, K., Kunugita, N. (2014). DNA damage signaling guards against perturbation of cyclin D1 expression triggered by low-dose long-term fractionated radiation. Oncogenesis, 3 (12), e132–e132. doi: http://doi.org/10.1038/oncsis.2014.48
  11. Chaves-Ferreira, M., Krenn, G., Vasseur, F., Barinov, A., Gonçalves, P., Azogui, O. et. al. (2016). The cyclin D1 carboxyl regulatory domain controls the division and differentiation of hematopoietic cells. Biology Direct, 11 (1). doi: http://doi.org/10.1186/s13062-016-0122-9
  12. Shimura, T., Ochiai, Y., Noma, N., Oikawa, T., Sano, Y., Fukumoto, M. (2013). Cyclin D1 overexpression perturbs DNA replication and induces replication-associated DNA double-strand breaks in acquired radioresistant cells. Cell Cycle, 12 (5), 773–782. doi: http://doi.org/10.4161/cc.23719
  13. Bazyka D. A., Kubashko A. V., Ilyenko I. M., Belyaev O. A., Pleskach O. J. (2015). Ekspresiia bilka Cyclin D1 ta heniv CCND1 i PNKP u mononuklearakh peryferychnoi krovi uchasnykiv likvidatsii naslidkiv avarii na ChAES z riznym stanom imunitetu. Problemy radiatsiinoi medytsyny ta radiobiolohii, 20, 269–282.
  14. Pestell, R. G. (2013). New roles of cyclin D1. The American Journal of Pathology, 183 (1), 3–9. doi: http://doi.org/10.1016/j.ajpath.2013.03.001
  15. Casimiro, M. C. Pestell, R. G. (2012). Cyclin D1 induces chromosomal instability. Oncotarget, 3 (3), 224–225. doi: http://doi.org/10.18632/oncotarget.476
  16. Kovalenko, A. N. (2012). Chernobylskye ocherky klynytsysta. Nikolaev: ChHU ym. Petra Mohyly, 347.
  17. Lou, X., Zhang, J., Liu, S., Xu, N., Liao, D. J. (2014). The other side of the coin: the tumor-suppressive aspect of oncogenes and the oncogenic aspect of tumor-suppressive genes, such as those along the CCND-CDK4/6-RB axis. Cell Cycle, 13 (11), 1677–1693. doi: http://doi.org/10.4161/cc.29082
  18. Shimura, T., Kakuda, S., Ochiai, Y., Nakagawa, H., Kuwahara, Y., Takai, Y. et. al. (2010). Acquired radioresistance of human tumor cells by DNA-PK/AKT/GSK3β-mediated cyclin D1 overexpression. Oncogene, 29 (34), 4826–4837. doi: http://doi.org/10.1038/onc.2010.238
  19. Shimura, T., Fukumoto, M., Kunugita, N. (2013). The role of cyclin D1 in response to long-term exposure to ionizing radiation. Cell Cycle, 12 (17), 2738–2743. doi: http://doi.org/10.4161/cc.25746

Published

2019-07-11

How to Cite

Zvarych, L., Golyarnik, N., & Ilienko, I. (2019). Level of Cyclin D1 protein in peripheral blood lymphocytes of Chornobyl clean-up workers in remote period after radiation exposure. ScienceRise: Biological Science, (2 (17), 4–9. https://doi.org/10.15587/2519-8025.2019.165703

Issue

Section

Biological Sciences