Quorum sensing autoinducers biosynthesis by biofilm cultures of Pseudomonas aeruginosa strains with different levels of the cyclic diguanozinmonophosphate
DOI:
https://doi.org/10.15587/2519-8025.2020.205217Keywords:
Pseudomonas aeruginosa, quorum sensing, biofilms, cyclic-di-GMP, QS autoinducersAbstract
The aim of the work is to establish relationships between content of the cyclo-di-GMP and the ability of P. aeruginosa to form biofilm and synthesis of the quorum sensing system autoinducers.
Materials and methods of research. Wild-type strain P. aeruginosa PA01 and P. aeruginosa strains with low (PAO1pJN2133) and high (PA01ΔwspF) levels of cyclic diguanosine monophosphate were used. Cultivation was performed in 24-well flat-bottomed plates Nuclon at37 °C in LB medium. Biofilm mass was determined in CV-test. The measurements were performed on a Smart Spec Plus spectrophotometer (Bio-Rad, Hungary) at a wavelength of 592 nm. Acyl-homserin lactones were extracted with acidified ethyl acetate and quantified by GC/MS. The cyclo-di-GMF content was determined using a Seattle reporter plasmid by measuring the fluorescence intensity of cells in biofilms.
Results of the research. It was found that the strain of P. aeruginosa PA01 pJN2133, the intracellular content of cyclo-di-GMP in which was 4 times less than that in wild type strain, forms biofilms with mass in 3.5 times lower compared to P. aeruginosa PA01. P. aeruginosa PA01 ΔwspF exceeds P. aeruginosa PA01 in 1.5 times and 33 %, respectively. Even more significant difference were found mutant strains was compared. The level of cyclo-di-GMP in P. aeruginosa PA01 ΔwspF was in 5.9 times higher than in the PA01 pJN2133 strain cells, and five times higher in biofilm weight. The highest amount of quorum sensing system signalling molecules were synthesized by a strain with a low level of secondary messenger.
Conclusions. There is a directly proportional relationship between the intracellular content of cyclic-di-GMP and the ability to form a biofilm: the higher content of the secondary messenger, leads to increased mass of the biofilm. The concentration of QS autoinducers in the medium is inversely related to the intracellular content of cyclic-di-GMP: it is increased in the strain with a low content of the secondary messenger and decreased in the strain with its increased level, compared to the parent strain
References
- Bjarnsholt, T., Jensen, P. O., Fiandaca, M. J., Pedersen, J., Hansen, C. R., Andersen, C. B. et. al. (2009). Pseudomonas aeruginosabiofilms in the respiratory tract of cystic fibrosis patients. Pediatric Pulmonology, 44 (6), 547–558. doi: http://doi.org/10.1002/ppul.21011
- Gellatly, S. L., Hancock, R. E. W. (2013). Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathogens and Disease, 67 (3), 159–173. doi: http://doi.org/10.1111/2049-632x.12033
- Sadikot, R., Bedi, B., Maurice, N. (2018). Microarchitecture of Pseudomonas aeruginosa biofilms: A biological perspective. Biomedical and Biotechnology Research Journal, 2 (4), 227–236. doi: http://doi.org/10.4103/bbrj.bbrj_98_18
- Ha, D.-G., O’Toole, G. A. (2015). C-di-GMP and its Effects on Biofilm Formation and Dispersion: a Pseudomonas Aeruginosa Review. Microbial Biofilms, 301–317. doi: http://doi.org/10.1128/9781555817466.ch15
- Valentini, M., Filloux, A. (2016). Biofilms and Cyclic di-GMP (c-di-GMP) Signaling: Lessons fromPseudomonas aeruginosaand Other Bacteria. Journal of Biological Chemistry, 291 (24), 12547–12555. doi: http://doi.org/10.1074/jbc.r115.711507
- Simm, R., Morr, M., Kader, A., Nimtz, M., Römling, U. (2004). GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Molecular Microbiology, 53 (4), 1123–1134. doi: http://doi.org/10.1111/j.1365-2958.2004.04206.x
- Romling, U., Galperin, M. Y., Gomelsky, M. (2013). Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger. Microbiology and Molecular Biology Reviews, 77 (1), 1–52. doi: http://doi.org/10.1128/mmbr.00043-12
- Seshasayee, A. S. N., Fraser, G. M., Luscombe, N. M. (2010). Comparative genomics of cyclic-di-GMP signalling in bacteria: post-translational regulation and catalytic activity. Nucleic Acids Research, 38 (18), 5970–5981. doi: http://doi.org/10.1093/nar/gkq382
- Hickman, J. W., Tifrea, D. F., Harwood, C. S. (2005). A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proceedings of the National Academy of Sciences, 102 (40), 14422–14427. doi: http://doi.org/10.1073/pnas.0507170102
- Lee, J., Zhang, L. (2014). The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein & Cell, 6 (1), 26–41. doi: http://doi.org/10.1007/s13238-014-0100-x
- Bjarnsholt, T., Tolker-Nielsen, T., Hoiby, N., Givskov, M. (2010). Interference of Pseudomonas aeruginosa signalling and biofilm formation for infection control. Expert Reviews in Molecular Medicine, 12. doi: http://doi.org/10.1017/s1462399410001420
- Pearson, J. P., Gray, K. M., Passador, L., Tucker, K. D., Eberhard, A., Iglewski, B. H., Greenberg, E. P. (1994). Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proceedings of the National Academy of Sciences, 91 (1), 197–201. doi: http://doi.org/10.1073/pnas.91.1.197
- Pesci, E. C., Milbank, J. B. J., Pearson, J. P., McKnight, S., Kende, A. S., Greenberg, E. P., Iglewski, B. H. (1999). Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 96 (20), 11229–11234. doi: http://doi.org/10.1073/pnas.96.20.11229
- Yang, L., Nilsson, M., Gjermansen, M., Givskov, M., Tolker-Nielsen, T. (2009). Pyoverdine and PQS mediated subpopulation interactions involved in Pseudomonas aeruginosa biofilm formation. Molecular Microbiology, 74 (6), 1380–1392. doi: http://doi.org/10.1111/j.1365-2958.2009.06934.x
- Barken, K. B., Pamp, S. J., Yang, L., Gjermansen, M., Bertrand, J. J., Klausen, M. et. al. (2008). Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environmental Microbiology, 10 (9), 2331–2343. doi: http://doi.org/10.1111/j.1462-2920.2008.01658.x
- Christensen, G. D., Simpson, W. A., Younger, J. J., Baddour, L. M., Barrett, F. F., Melton, D. M., Beachey, E. H. (1985). Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. Journal of Clinical Microbiology, 22 (6), 996–1006. doi: http://doi.org/10.1128/jcm.22.6.996-1006.1985
- Cataldi, T. R. I., Bianco, G., Frommberger, M., Schmitt-Kopplin, P. (2004). Direct analysis of selectedN-acyl-L-homoserine lactones by gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 18 (12), 1341–1344. doi: http://doi.org/10.1002/rcm.1480
- Palmer, G. C., Schertzer, J. W., Mashburn-Warren, L., Whiteley, M. (2010). Quantifying Pseudomonas aeruginosa Quinolones and Examining Their Interactions with Lipids. Quorum Sensing, 207–217. doi: http://doi.org/10.1007/978-1-60761-971-0_15
- Rybtke, M. T., Borlee, B. R., Murakami, K., Irie, Y., Hentzer, M., Nielsen, T. E. et. al. (2012). Fluorescence-Based Reporter for Gauging Cyclic Di-GMP Levels in Pseudomonas aeruginosa. Applied and Environmental Microbiology, 78 (15), 5060–5069. doi: http://doi.org/10.1128/aem.00414-12
- Lapach, S. N., Chubenko, A. V., Babych, P. N. (2001). Statystycheskye metodы v medyko-byolohycheskykh yssledovanyiakh s yspolzovanyem Excel. Kyiv: Moryon, 260.
- Halkin, M. B., Semenets, A. S., Finohenova, M. O., Halkin, B. M., Filipova, T. O. (2017). Biofilm formation and motility of bacteria Pseudomonas aeruginosa with different c-di- GMP level. Microbiology&Biotechnology, 2 (38), 40–50. doi: http://doi.org/10.18524/2307-4663.2017.2(38).105020
- Lin Chua, S., Liu, Y., Li, Y., Jun Ting, H., Kohli, G. S., Cai, Z. et. al. (2017). Reduced Intracellular c-di-GMP Content Increases Expression of Quorum Sensing-Regulated Genes in Pseudomonas aeruginosa. Frontiers in Cellular and Infection Microbiology, 7. doi: http://doi.org/10.3389/fcimb.2017.00451
- Turkina, M. V., Vikström, E. (2018). Bacteria-Host Crosstalk: Sensing of the Quorum in the Context of Pseudomonas aeruginosa Infections. Journal of Innate Immunity, 11 (3), 263–279. doi: http://doi.org/10.1159/000494069
- Singh, S., Singh, S. K., Chowdhury, I., Singh, R. (2017). Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents. The Open Microbiology Journal, 11 (1), 53–62. doi: http://doi.org/10.2174/1874285801711010053
- Schuster, M., Peter Greenberg, E. (2006). A network of networks: Quorum-sensing gene regulation in Pseudomonas aeruginosa. International Journal of Medical Microbiology, 296 (2-3), 73–81. doi: http://doi.org/10.1016/j.ijmm.2006.01.036
- Papenfort, K., Bassler, B. L. (2016). Quorum sensing signal–response systems in Gram-negative bacteria. Nature Reviews Microbiology, 14 (9), 576–588. doi: http://doi.org/10.1038/nrmicro.2016.89
- Galkin, M. B., Mukhlis Abedalabas, I., Pachomova, E. Yu., Filipova, T. O. (2014). The effect of Pseudomonas aeruginosa signal quinolone on the rhamnolipids biosynthesis and rhamnosyltransferase 2 activity. European Scientific Journal, 3, 223–228.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Mykola Galkin, Anastasia Semenets, Boris Galkin, Tetiana Filipova
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.