Determination of the anticancer properties of cis- and trans-diadamanthylcarboxylates of dirhenium(III)

Authors

  • Natalia Shtemenko State Higher Educational Institution "Ukrainian State University of Chemical Technology" Gagarina ave., 8, Dnipro, Ukraine, 49005, Ukraine https://orcid.org/0000-0002-5152-7270
  • Katerina Polokhina State Higher Educational Institution "Ukrainian State University of Chemical Technology" Gagarina ave., 8, Dnipro, Ukraine, 49005, Ukraine https://orcid.org/0000-0002-2173-5327
  • Alexander Golichenko State Higher Educational Institution "Ukrainian State University of Chemical Technology" Gagarina ave., 8, Dnipro, Ukraine, 49005, Ukraine https://orcid.org/0000-0002-8888-794X
  • Svetlana Babiy State Higher Educational Institution "Ukrainian State University of Chemical Technology" Gagarina ave., 8, Dnipro, Ukraine, 49005, Ukraine https://orcid.org/0000-0002-2304-9144
  • Alexander Shtemenko State Higher Educational Institution "Ukrainian State University of Chemical Technology" Gagarina ave., 8, Dnipro, Ukraine, 49005, Ukraine https://orcid.org/0000-0002-5588-0901

DOI:

https://doi.org/10.15587/2519-8025.2020.217554

Keywords:

dirhenium(III) cluster compounds, adamantanecarboxylic acid, cisplatin, model of tumor growth, Calf Thymus DNA, antiradical activity

Abstract

The aim of the study. The aim of the work was to investigate in vivo anticancer activity of cis- and trans-diadamanthylcarboxylates of dirhenium(III) alone and together with cisplatin in form of nanobins.

Materials and methods. Model of tumor growth, Guerin’s carcinoma; intraperitoneal administration of cisplatin, dirhenium(III) compounds in liposomes and of binary liposomes, containing both cytostatics; volumes and final weights of tumors were measured.

Results. In vivo antitumor properties of two dirhenium(III) dicarboxylates with 1-adamantanecarboxylic acid moieties as ligands with cis- (I) and trans- (II) orientation of the carboxylic groups around a cluster fragment alone and together with cisplatin were presented; an attempt to understand differences in a possible mechanism of anticancer activity of the substances were undertaken. Antiradical and DNA-binding properties of I and II were the matter of consideration.

Conclusions. Cis- and trans- compounds of dirhenium I and II had close antitumor activity in vivo with a little bit superiority of the cis- analog. Mechanisms of anticancer activity of I and II are different and may also include monofunctional adduct formation and subsequent interstrand cross-linking for the II substance, formation of protein-DNA cross-links, etc.

Author Biographies

Natalia Shtemenko, State Higher Educational Institution "Ukrainian State University of Chemical Technology" Gagarina ave., 8, Dnipro, Ukraine, 49005

Doctor of Biological Sciences, Professor

Department of Inorganic Chemistry

Katerina Polokhina, State Higher Educational Institution "Ukrainian State University of Chemical Technology" Gagarina ave., 8, Dnipro, Ukraine, 49005

Department of Inorganic Chemistry

Alexander Golichenko, State Higher Educational Institution "Ukrainian State University of Chemical Technology" Gagarina ave., 8, Dnipro, Ukraine, 49005

Doctor of Chemical Sciences, Associate Professor

Department of Inorganic Chemistry

Svetlana Babiy, State Higher Educational Institution "Ukrainian State University of Chemical Technology" Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD

Department of Inorganic Chemistry

Alexander Shtemenko, State Higher Educational Institution "Ukrainian State University of Chemical Technology" Gagarina ave., 8, Dnipro, Ukraine, 49005

Doctor of Chemical Sciences, Professor

Department of Inorganic Chemistry

References

  1. Shtemenko, A. V., Shtemenko, N. I. (2017). Rhenium–platinum antitumor systems. The Ukrainian Biochemical Journal, 89 (2), 5–30. doi: http://doi.org/10.15407/ubj89.02.005
  2. Johnstone, T. C., Suntharalingam, K., Lippard, S. J. (2016). The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chemical Reviews, 116 (5), 3436–3486. doi: http://doi.org/10.1021/acs.chemrev.5b00597
  3. Shamelashvili, K. L., Shtemenko, N. I., Leus, І. V., Babiy, S. O., Shtemenko, O. V. (2016). Changes in oxidative stress intensity in blood of tumor-bearing rats following different modes of administration of rhenium-platinum system. The Ukrainian Biochemical Journal, 88 (4), 29–39. doi: http://doi.org/10.15407/ubj88.04.029
  4. Meier-Menches, S. M., Gerner, C., Berger, W., Hartinger, C. G., Keppler, B. K. (2018). Structure–activity relationships for ruthenium and osmium anticancer agents – towards clinical development. Chemical Society Reviews, 47 (3), 909–928. doi: http://doi.org/10.1039/c7cs00332c
  5. Bouchal, P., Jarkovsky, J., Hrazdilova, K., Dvorakova, M., Struharova, I., Hernychova, L. et. al. (2011). The new platinum-based anticancer agent LA-12 induces retinol binding protein 4 in vivo. Proteome Science, 9 (1), 68–76. doi: http://doi.org/10.1186/1477-5956-9-68
  6. Wanka, L., Iqbal, K., Schreiner, P. R. (2013). The Lipophilic Bullet Hits the Targets: Medicinal Chemistry of Adamantane Derivatives. Chemical Reviews, 113 (5), 3516–3604. doi: http://doi.org/10.1021/cr100264t
  7. Štimac, A., Šekutor, M., Mlinarić-Majerski, K., Frkanec, L., Frkanec, R. (2017). Adamantane in Drug Delivery Systems and Surface Recognition. Molecules, 22 (2), 297–310. doi: http://doi.org/10.3390/molecules22020297
  8. Polokhina, K. V., Kytova, D. E., Shtemenko, A. V., Shtemenko, N. I. (2020). Cytotoxic activity of the cluster rhenium compound with β-alanine ligands. The Ukrainian Biochemical Journal, 92 (1), 120–126. doi: http://doi.org/10.15407/ubj92.01.120
  9. Golichenko, A. A., Shtemenko, A. V. (2006). Cluster rhenium(III) complexes with adamantanecarboxylic acids: Synthesis and properties. Russian Journal of Coordination Chemistry, 32 (4), 242–249. doi: http://doi.org/10.1134/s1070328406040038
  10. Li, Z., Shtemenko, N. I., Yegorova, D. Y., Babiy, S. O., Brown, A. J., Yang, T. et. al. (2014). Liposomes loaded with a dirhenium compound and cisplatin: preparation, properties and improvedin vivoanticancer activity. Journal of Liposome Research, 25 (1), 78–87. doi: http://doi.org/10.3109/08982104.2014.954127
  11. Jamieson, E. R., Lippard, S. J. (1999). Structure, Recognition, and Processing of Cisplatin-DNA Adducts. Chemical Reviews, 99 (9), 2467–2498. doi: http://doi.org/10.1021/cr980421n
  12. Peleg-Shulman, T., Najajreh, Y., Gibson, D. (2002). Interactions of cisplatin and transplatin with proteins: Comparison of binding kinetics, binding sites and reactivity of the Pt-protein adducts of cisplatin and transplatin towards biological nucleophiles. Journal of Inorganic Biochemistry, 91 (1), 306–311. doi: http://doi.org/10.1016/s0162-0134(02)00362-8
  13. Cleare, M. J., Hoeschele, J. D. (1973). Studies on the antitumor activity of group VIII transition metal complexes. Part I. Platinum (II) complexes. Bioinorganic Chemistry, 2 (3), 187–210. doi: http://doi.org/10.1016/s0006-3061(00)80249-5
  14. Coluccia, M., Natile, G. (2007). Trans-Platinum Complexes in Cancer Therapy. Anti-Cancer Agents in Medicinal Chemistry, 7 (1), 111–123. doi: http://doi.org/10.2174/187152007779314080
  15. Aris, S. M., Farrell, N. P. (2009). Towards Antitumor Activetrans-Platinum Compounds. European Journal of Inorganic Chemistry, 2009 (10), 1293–1302. doi: http://doi.org/10.1002/ejic.200801118
  16. Murphy, R. F., Farrell, N., Aguila, A., Okada, M., Balis, F. M., Fojo, T. (2005). Accumulation of Novel Transplatinum Complexes in Cisplatin and Oxaliplatin Resistant Cell Lines Overcomes Resistance. Proceedings of the American Association for Cancer Research, 66 (9), 4109.
  17. Boccarelli, A., Intini, F. P., Sasanelli, R., Sivo, M. F., Coluccia, M., Natile, G. (2006). Synthesis and in Vitro Antitumor Activity of Platinum Acetonimine Complexes. Journal of Medicinal Chemistry, 49 (2), 829–837. doi: http://doi.org/10.1021/jm050986t
  18. Paramonova, K., Golichenko, A., Babiy, S., Shtemenko, A., Shtemenko, N. (2016). The interaction of DNA with cluster rhenium compounds of different structural types. World of Medicine and Biology, 56 (2), 140–144.
  19. Polokhina, K., Golichenko, A., Babiy, S., Dzhumaniyazova, O., Shtemenko, A., Shtemenko, N. (2016). Investigation of the interaction of cluster compounds of rhenium with biological active ligands with supercoiled DNA by electronic spectroscopy. Visnyk of the Lviv University. Series Biology, 72, 15–24.
  20. Golichenko, O. A., Tretyak, S. Y., Shtemenko, O. V. (2016). The antiradical activity of cis-tetraсhlorodi-μ-carboxylate of dirhenium(III). Voprosy Khimii i Khimicheskoi Tekhnologii, 2, 21–25.
  21. Tretyak, S. Y., Golichenko, O. A., Shtemenko, O. V. (2011). The interaction of the trans-tetrachlorodi-m-carboxylates of dirhenium(III) with diphenylpicrilhydrazyl radical. Voprosy Khimii i Khimicheskoi Tekhnologii, 5, 99–101.
  22. Leus, I. V., Shamelashvili, K. L., Skorik, O. D., Tretyak, S. Y., Golichenko, O. A., Shtemenko, O. V. et. al. (2012). Antioxidant and antitumor activity of dirhenium dicarboxylates in animals with Guerin carcinoma. Ukrainian Biochemical Journal, 84 (3), 87–96.

Downloads

Published

2020-12-30

How to Cite

Shtemenko, N., Polokhina, K., Golichenko, A., Babiy, S., & Shtemenko, A. (2020). Determination of the anticancer properties of cis- and trans-diadamanthylcarboxylates of dirhenium(III). ScienceRise: Biological Science, (4(25), 8–12. https://doi.org/10.15587/2519-8025.2020.217554

Issue

Section

Biological Sciences