Use of tetracyclines and sulfonamides for the treatment of infectious diseases in animals

Authors

DOI:

https://doi.org/10.15587/2519-8025.2021.235057

Keywords:

tetracyclines, sulfonamides trimethoprim, pharmacokinetic parameters, withdrawal period, maximum residue limits

Abstract

The use of antimicrobial medicines in human and veterinary medicine has led to the problem of the development of acquired antimicrobial resistance, which causes a global threat. Were described principles of tetracyclines and sulfonamides use, which are the most common among antimicrobial substances in veterinary medicinal products for the treatment of infectious diseases of food-producing and domestic animals.

The aim. To substantiate the clinical relevance of antimicrobial veterinary medicinal products containing tetracyclines and sulfonamides+trimethoprim in veterinary medicine.

Materials and methods. Research materials: sales reports of antimicrobial veterinary medicinal products in Ukraine for 2015–2019, EU countries, and the USA. Methods used: written and electronic survey; bibliosemantic, analytical and generalization.

Results and discussion. As a result of the annual monitoring for 2015–2019 sales volumes in Ukraine, it was determined that tetracyclines (29.5–37.91 %) and sulfonamides + trimethoprim (12.1–18.7 %) were most often used in the composition of veterinary medicines. The same trend regarding the use of these classes of antimicrobials exists in many countries around the world. Factors determining the clinical relevance of these groups of substances are based on the criteria for their selection.

The principle proposed by the EMA for the choice of antimicrobial veterinary medicinal products is based on the following criteria: categories of target animal species; treatment indications; the route of administration; the type of pharmaceutical formulation; the choice of a dosage regimen. Following this principle was substantiated the feasibility of tetracyclines and sulfonamides+trimethoprim use in veterinary medicine.

By pharmacokinetic and pharmacodynamic parameters evaluated the rationality of the choice of antimicrobial veterinary medicines.

Conclusions. The study revealed clinical efficacy and safety of tetracyclines and sulfonamides+trimethoprim as Veterinary Critically Important Antimicrobial Agents of Category D “Prudence”

Author Biographies

Yuri Kosenko, National Agency of Veterinary Medicinal Products and Feed Additives; State Scientific-Research Control Institute of Veterinary Medicinal Products and Feed

Doctor of Biological Sciences, Head of Agency;

Deputy Director

Svitlana Bilous, Danylo Halytsky Lviv National Medical University

Doctor of Pharmaceutical Sciences, Associate Professor, Head of Department

Department of Technology of Drugs and Biopharmacy

Natalia Ostapiv, State Scientific-Research Control Institute of Veterinary Medicinal Products and Feed Additives

Head of Sector

Pharmacovigilance and Antibiotic Resistance Sector

National Agency of Veterinary Medicinal Products and Feed Additives

Lyubov Zaruma, State Scientific-Research Control Institute of Veterinary Medicinal Products and Feed Additives

PhD, Senior Researcher

National Agency of Veterinary Medicinal Products and Feed Additives

References

  1. Natsionalnyi plan dii borotby zi stiikistiu do protymikrobnykh preparativ (2019). Postanova KМU No. 116-r. 06.03.2019. Available at: https://www.kmu.gov.ua/news/uryad-zatverdiv-nacionalnij-plan-dij-borotbi-zi-stijkistyu-do-protimikrobnih-preparativ
  2. Resolution No. 26 Combating Antimicrobial Resistance and Promoting the Prudent Use of Antimicrobial Agents in Animals (2015). World Assembly of Delegates of the OIE. Paris. Available at: http://www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/AMR/A_RESO_AMR_2015.pdf
  3. EMA/CVMP (2016). Guideline for the demonstration of efficacy for veterinary medicinal products containing antimicrobial substances (EMA/CVMP/627/2001-Rev.1). Available at: https://www.ema.europa.eu/en/demonstration-efficacy-veterinary-medicinal-products-containing-antimicrobial-substances
  4. EMA/CVMP (2015). CVMP strategy on antimicrobials 2016–2020. European Medicines Agency, Committee for Medicinal Products for Veterinary Use. Available at: https://www.ema.europa.eu/documents/scientific-guideline/draft-committee-medicinal-products-veterinary-use-strategy-antimicrobials-2016-2020_en.pdf
  5. Bondt, N., Jensen, V. F., Puister-Jansen, L. F., van Geijlswijk, I. M. (2013). Comparing antimicrobial exposure based on sales data. Preventive Veterinary Medicine, 108 (1), 10–20. doi: http://doi.org/10.1016/j.prevetmed.2012.07.009
  6. Grave, K., Torren-Edo, J., Muller, A., Greko, C., Moulin, G. et. al. (2014). Variations in the sales and sales patterns of veterinary antimicrobial agents in 25 European countries. Journal of Antimicrobial Chemotherapy, 69 (8), 2284–2291. doi: http://doi.org/10.1093/jac/dku106
  7. Carmo, L. P., Schüpbach-Regula, G., Müntener, C., Chevance, A., Moulin, G., Magouras, I. (2017). Approaches for quantifying antimicrobial consumption per animal species based on national sales data: a Swiss example, 2006 to 2013. Eurosurveillance, 22 (6). doi: http://doi.org/10.2807/1560-7917.es.2017.22.6.30458
  8. Merle, R., Meyer‐Kühling, B. (2019). Sales data as a measure of antibiotics usage: Concepts, examples and discussion of influencing factors. Veterinary Medicine and Science, 6 (1), 154–163. doi: http://doi.org/10.1002/vms3.205
  9. EMA/ESVAC. (2016). Sales of veterinary antimicrobial agents in 29 European countries in 2014 Trends from 2011 to 2014. London. Available at: https://www.ema.europa.eu/documents/report/sixth-esvac-report-sales-veterinary-antimicrobial-agents-29-european-countries-2014_en.pdf
  10. EMA/ESVAC (2017). Sales of veterinary antimicrobial agents in 30 European countries in 2015 Trends from 2010 to 2015. London. Available at: https://www.ema.europa.eu/documents/report/seventh-esvac-report-sales-veterinary-antimicrobial-agents-30-european-countries-2015_en.pdf
  11. FDA (2016). Summary Report On Antimicrobials Sold or Distributed for Use in Food-Producing Animals. Available at: https://www.fda.gov/downloads/forindustry/userfees/animaldruguserfeeactadufa/ucm534243.pdf
  12. FDA (2014). Summary Report On Antimicrobials Sold or Distributed for Use in Food-Producing Animals. Available at: https://www.fda.gov/downloads/forindustry/userfees/animaldruguserfeeactadufa/ucm231851.pdf
  13. Collineau, L., Belloc, C., Stärk, K. D. C., Hémonic, A., Postma, M., Dewulf, J., Chauvin, C. (2016). Guidance on the Selection of Appropriate Indicators for Quantification of Antimicrobial Usage in Humans and Animals. Zoonoses and Public Health, 64 (3), 165–184. doi: http://doi.org/10.1111/zph.12298
  14. EMA/CVMP/849775/2017 (2021) Reflection paper on dose review and adjustment of established veterinary antibiotics in the context of SPC harmonisation. Available at: https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-dose-review-adjustment-established-veterinary-antibiotics-context-spc-harmonisation_en.pdf
  15. OIE (2019) OIE list of antimicrobial agents of veterinary importance. Paris. Available at: https://www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/AMR/A_OIE_List_antimicrobials_July2019.pdf
  16. WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR). (2017). Critically important antimicrobials for human medicine. Ranking of antimicrobial agents for risk management of antimicrobial resistance due to non‐human use. Geneva: WHO, 48. Available at: https://apps.who.int/iris/handle/10665/255027
  17. WHO (2017). WHO guidelines on use of medically important antimicrobials in food-producing animals. Geneva. Available at: http://apps.who.int/iris/bitstream/handle/10665/258970/9789241550130-eng.pdf;jsessionid=DDCD0A19E8266F7A9CF40F71A5CC1E48?sequence=1
  18. EMA (2019). EMA/CVMP/CHMP. Categorisation of antibiotics in the European Union. Amsterdam. Available at: https://www.ema.europa.eu/en/documents/report/categorisation-antibiotics-european-union-answer-request-european-commission-updating-scientific_en.pdf
  19. Boothe, D. M. (2015). Tetracyclines. MSD Manual. Veterinary Manual. Available at: https://www.msdvetmanual.com/pharmacology/antibacterial-agents/tetracyclines
  20. Boothe, D. M. (2015). Sulfonamides and Sulfonamide Combinations. MSD Manual. Veterinary Manual. Available at: https://www.msdvetmanual.com/pharmacology/antibacterial-agents/sulfonamides-and-sulfonamide-combinations
  21. Granados-Chinchilla, F., Rodríguez, C. (2017). Tetracyclines in Food and Feedingstuffs: From Regulation to Analytical Methods, Bacterial Resistance, and Environmental and Health Implications. Journal of Analytical Methods in Chemistry, 2017, 1–24. doi: http://doi.org/10.1155/2017/1315497
  22. Drusano, G. L. (2016). From lead optimization to NDA approval for a new antimicrobial: Use of pre-clinical effect models and pharmacokinetic/pharmacodynamic mathematical modeling. Bioorganic & Medicinal Chemistry, 24 (24), 6401–6408. doi: http://doi.org/10.1016/j.bmc.2016.08.034
  23. Bhavsar, S. K., Thaker, A. M.; Noreddin, A. (Ed.) (2012). Pharmacokinetics of Antimicrobials in Food Producing Animals. Readings in Advanced Pharmacokinetics – Theory, Methods and Applications. doi: http://doi.org/10.5772/33787
  24. Aktas, İ., Yarsan, E. (2017). Pharmacokinetics of Conventional and Long-Acting Oxytetracycline Preparations in Kilis Goat. Frontiers in Veterinary Science, 4. doi: http://doi.org/10.3389/fvets.2017.00229
  25. Sharma, S., Singh, S. P., Ahmad, A. H., Choudhary, G. K. (2016). Comparison of pharmacokinetic parameters of oxytetracycline following single intravenous administration in goat, sheep and cattle calf. Indian Journal of Animal Sciences, 86 (6), 673–675. Available at: https://www.researchgate.net/publication/304077290_
  26. Sjölund, M., Postma, M., Collineau, L., Lösken, S., Backhans, A., Belloc, C. et. al. (2016). Quantitative and qualitative antimicrobial usage patterns in farrow-to-finish pig herds in Belgium, France, Germany and Sweden. Preventive Veterinary Medicine, 130, 41–50. doi: http://doi.org/10.1016/j.prevetmed.2016.06.003
  27. Regulation (EU) 2019/6 of the European Parliament and of the Council. of 11 December 2018 on veterinary medicinal products and repealing Directive 2001/82/EC (2018). Official Journal of the European Union. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0006&from=EN
  28. Pro zatverdzhennia Pokaznykiv bezpechnosti kharchovykh produktiv "Maksymalni mezhi (rivni) zalyshkiv diiuchykh rechovyn veterynarnykh preparativ u kharchovykh produktakh tvarynnoho pokhodzhennia" (2019). Nakaz MOZ Ukrainy No. 2646. 23.12.2019. Available at: https://zakon.rada.gov.ua/laws/show/z0042-20#Text
  29. Achenbach, T. E. (2000). «Physiological and classical pharmacokinetic models of oxytetracycline in cattle. Simon Fraser University. Available at: https://www.collectionscanada.gc.ca/obj/s4/f2/dsk1/tape2/PQDD_0029/MQ62610.pdf

Downloads

Published

2021-06-30

How to Cite

Kosenko, Y., Bilous, S., Ostapiv, N., & Zaruma, L. (2021). Use of tetracyclines and sulfonamides for the treatment of infectious diseases in animals. ScienceRise: Biological Science, (2(27), 10–17. https://doi.org/10.15587/2519-8025.2021.235057

Issue

Section

Biological research