Evaluation of antimicrobial activity of biomaterials based on alginate and decametoxin against Staphylococus aureus and Escherichia coli

Authors

DOI:

https://doi.org/10.15587/2519-8025.2023.298594

Keywords:

antimicrobial biomaterials, S.aureus, E.coli, antiseptics, decamethoxin, calcium alginate, antibiotic resistance

Abstract

The aim was to study the antimicrobial activity of new biomaterials based on decamethoxine and commercially available wound dressings against reference and clinical strains of S.aureus and E.coli.

Materials and methods. Developed biomaterials with 0.05 % decamethoxine (DCM No. 1-3) and wound dressings containing antiseptics Suprasorb®, SILVERCEL®, Urgotul SSD®, GUANPOLISEPT®, Bétadine® were used for the study. Antimicrobial properties were studied by zone of inhibition (ZOI) testing using the Kirby-Bauer method.

Results. In relation to S.aureus ATCC 25923, a significantly higher antimicrobial activity of biomaterials with DCM compared to silver- and iodine-containing wound dressings was found to be 1.97-2.11 (p <0.001) and 1.73-1.86 times (p <0.001), respectively. Similar activity against S.aureus ATCC 25923 was possessed by all three samples with DCM (ZOI - from 21.98±0.18 to 23.58±0.26 mm) and Suprasorb® (19.31±0.17 mm), Guanpolisept® (19.13±0.12 mm). Such a tendency was also found in relation to clinical strains of staphylococci. A high level of activity against E.coli ATCC 25922 was shown by biomaterials No. 1-3 DCM (ZOI - from 19.01±0.33 to 21.54±0.23 mm), Guanpolisept® (18.74±0.12 mm) and Suprasorb® (18.43±0.13 mm). Clinical strains of E.coli showed greater tolerance to antimicrobial biomaterials: the difference in mean values between the ZOI of the reference and ZOI of clinical strains of E.coli was significant for all biomaterials (p <0.001). The most effective were biomaterials with DCM No. 1-3 (ZOI - from 15.58±0.25 to 16.41±0.16 mm), as well as Suprasorb® (15.82±0.31 mm).

Conclusions. Biomaterials based on decamethoxine No. 1, No. 2, No. 3, Suprasorb®, Guanpolisept®, and Bétadine® have the highest antistaphylococcal activity. Biomaterials with decamethoxin No.1-3, Suprasorb® and Guanpolisept® show the strongest effect on reference and clinical strains of E.coli

Author Biographies

Oleksandr Nazarchuk, National Pirogov Memorial Medical University, Vinnytsya

Doctor of Medical Sciences, Professor

Department of Microbiology

Tetyana Denysko, National Pirogov Memorial Medical University, Vinnytsya

Postgraduate Student

Department of Microbiology

References

  1. Guiomar, A. J., Urbano, A. M. (2022). Polyhexanide-Releasing Membranes for Antimicrobial Wound Dressings: A Critical Review. Membranes, 12 (12), 1281. doi: https://doi.org/10.3390/membranes12121281
  2. Liang, Y., Liang, Y., Zhang, H., Guo, B. (2022). Antibacterial biomaterials for skin wound dressing. Asian Journal of Pharmaceutical Sciences, 17 (3), 353–384. doi: https://doi.org/10.1016/j.ajps.2022.01.001
  3. Boateng, J., Catanzano, O. (2015). Advanced Therapeutic Dressings for Effective Wound Healing – A Review. Journal of Pharmaceutical Sciences, 104 (11), 3653–3680. doi: https://doi.org/10.1002/jps.24610
  4. Norouzi, M., Boroujeni, S. M., Omidvarkordshouli, N., Soleimani, M. (2015). Advances in Skin Regeneration: Application of Electrospun Scaffolds. Advanced Healthcare Materials, 4 (8), 1114–1133. doi: https://doi.org/10.1002/adhm.201500001
  5. Pahlevanzadeh, F., Setayeshmehr, M., Bakhsheshi-Rad, H. R., Emadi, R., Kharaziha, M., Poursamar, S. A., Ismail, A. F., Sharif, S., Chen, X., Berto, F. (2022). A Review on Antibacterial Biomaterials in Biomedical Applications: From Materials Perspective to Bioinks Design. Polymers, 14 (11), 2238. doi: https://doi.org/10.3390/polym14112238
  6. Sam, S., Joseph, B., Thomas, S. (2023). Exploring the antimicrobial features of biomaterials for biomedical applications. Results in Engineering, 17, 100979. doi: https://doi.org/10.1016/j.rineng.2023.100979
  7. Yu, R., Zhang, H., Guo, B. (2021). Conductive Biomaterials as Bioactive Wound Dressing for Wound Healing and Skin Tissue Engineering. Nano-Micro Letters, 14 (1). doi: https://doi.org/10.1007/s40820-021-00751-y
  8. Dodero, A., Scarfi, S., Pozzolini, M., Vicini, S., Alloisio, M., Castellano, M. (2019). Alginate-Based Electrospun Membranes Containing ZnO Nanoparticles as Potential Wound Healing Patches: Biological, Mechanical, and Physicochemical Characterization. ACS Applied Materials & Interfaces, 12 (3), 3371–3381. doi: https://doi.org/10.1021/acsami.9b17597
  9. Da Silva, J., Leal, E. C., Carvalho, E., Silva, E. A. (2023). Innovative Functional Biomaterials as Therapeutic Wound Dressings for Chronic Diabetic Foot Ulcers. International Journal of Molecular Sciences, 24 (12), 9900. doi: https://doi.org/10.3390/ijms24129900
  10. Simões, D., Miguel, S. P., Ribeiro, M. P., Coutinho, P., Mendonça, A. G., Correia, I. J. (2018). Recent advances on antimicrobial wound dressing: A review. European Journal of Pharmaceutics and Biopharmaceutics, 127, 130–141. doi: https://doi.org/10.1016/j.ejpb.2018.02.022
  11. Falk, N. A. (2019). Surfactants as Antimicrobials: A Brief Overview of Microbial Interfacial Chemistry and Surfactant Antimicrobial Activity. Journal of Surfactants and Detergents, 22(5), 1119–1127. doi: https://doi.org/10.1002/jsde.12293
  12. Babalska, Z. Ł., Korbecka-Paczkowska, M., Karpiński, T. M. (2021). Wound Antiseptics and European Guidelines for Antiseptic Application in Wound Treatment. Pharmaceuticals, 14 (12), 1253. doi: https://doi.org/10.3390/ph14121253
  13. Joyce, K., Fabra, G. T., Bozkurt, Y., Pandit, A. (2021). Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduction and Targeted Therapy, 6 (1). doi: https://doi.org/10.1038/s41392-021-00512-8
  14. EUCAST disk diffusion test methodology (2015). European committee on antimicrobial susceptibility testing (EUCAST). Available at: https://www.eucast.org/ast_of_bacteria/disk_diffusion_methodology/ Last accessed: 12.08.2015
  15. Routine and extended internal quality control for MIC determination and disk diffusion as recommended by EUCAST version 12.0 (2022). European Committee on Antimicrobial Susceptibility Testing; Växjö.
  16. Matuschek, E., Longshaw, C., Takemura, M., Yamano, Y., Kahlmeter, G. (2022). Cefiderocol: EUCAST criteria for disc diffusion and broth microdilution for antimicrobial susceptibility testing. Journal of Antimicrobial Chemotherapy, 77 (6), 1662–1669. doi: https://doi.org/10.1093/jac/dkac080
  17. Antimicrobial Susceptibility Testing, EUCAST Disk Diffusion Method, Version 11.0 (2023). The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Available at: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2023_manuals/Manual_v_11.0_EUCAST_Disk_Test_2023.pdf Last accessed: 10.01.2023
  18. Chambers, H. F., DeLeo, F. R. (2009). Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Reviews Microbiology, 7 (9), 629–641. doi: https://doi.org/10.1038/nrmicro2200
  19. Ejaz, M., Syed, M. A., Jackson, C. R., Sharif, M., Faryal, R. (2023). Epidemiology of Staphylococcus aureus Non-Susceptible to Vancomycin in South Asia. Antibiotics, 12 (6), 972. doi: https://doi.org/10.3390/antibiotics12060972
  20. Reich, P. J., Boyle, M. G., Hogan, P. G., Johnson, A. J., Wallace, M. A., Elward, A. M. et al. (2016). Emergence of community-associated methicillin-resistant Staphylococcus aureus strains in the neonatal intensive care unit: an infection prevention and patient safety challenge. Clinical Microbiology and Infection, 22 (7), 645.e1–645.e8. doi: https://doi.org/10.1016/j.cmi.2016.04.013
  21. Yang, E. S., Tan, J., Eells, S., Rieg, G., Tagudar, G., Miller, L. G. (2010). Body site colonization in patients with community-associated methicillin-resistant Staphylococcus aureus and other types of S. aureus skin infections. Clinical Microbiology and Infection, 16 (5), 425–431. doi: https://doi.org/10.1111/j.1469-0691.2009.02836.x
  22. Linz, M. S., Mattappallil, A., Finkel, D., Parker, D. (2023). Clinical Impact of Staphylococcus aureus Skin and Soft Tissue Infections. Antibiotics, 12 (3), 557. doi: https://doi.org/10.3390/antibiotics12030557
  23. Esposito, S., Blasi, F., Curtis, N., Kaplan, S., Lazzarotto, T., Meschiari, M. et al. (2023). New Antibiotics for Staphylococcus aureus Infection: An Update from the World Association of Infectious Diseases and Immunological Disorders (WAidid) and the Italian Society of Anti-Infective Therapy (SITA). Antibiotics, 12 (4), 742. doi: https://doi.org/10.3390/antibiotics12040742
  24. Upreti, N., Rayamajhee, B., Sherchan, S. P., Choudhari, M. K., Banjara, M. R. (2018). Prevalence of methicillin resistant Staphylococcus aureus, multidrug resistant and extended spectrum β-lactamase producing gram negative bacilli causing wound infections at a tertiary care hospital of Nepal. Antimicrobial Resistance & Infection Control, 7 (1). doi: https://doi.org/10.1186/s13756-018-0408-z
  25. Tefera, S., Awoke, T., Mekonnen, D. (2021). Methicillin and Vancomycin Resistant Staphylococcus aureus and Associated Factors from Surgical Ward Inpatients at Debre Markos Referral Hospital, Northwest Ethiopia. Infection and Drug Resistance, 14, 3053–3062. doi: https://doi.org/10.2147/idr.s324042
  26. Braz, V. S., Melchior, K., Moreira, C. G. (2020). Escherichia coli as a Multifaceted Pathogenic and Versatile Bacterium. Frontiers in Cellular and Infection Microbiology, 10. doi: https://doi.org/10.3389/fcimb.2020.548492
  27. Wilcox, M. H., Dryden, M. (2021). Update on the epidemiology of healthcare-acquired bacterial infections: focus on complicated skin and skin structure infections. Journal of Antimicrobial Chemotherapy, 76 (4), iv2–iv8. doi: https://doi.org/10.1093/jac/dkab350
  28. Puca, V., Marulli, R. Z., Grande, R., Vitale, I., Niro, A., Molinaro, G. et al. (2021). Microbial Species Isolated from Infected Wounds and Antimicrobial Resistance Analysis: Data Emerging from a Three-Years Retrospective Study. Antibiotics, 10 (10), 1162. doi: https://doi.org/10.3390/antibiotics10101162
  29. Urase, T., Okazaki, M., Tsutsui, H. (2020). Prevalence of ESBL-producing Escherichia coli and carbapenem-resistant Enterobacteriaceae in treated wastewater: a comparison with nosocomial infection surveillance. Journal of Water and Health, 18 (6), 899–910. doi: https://doi.org/10.2166/wh.2020.014
  30. Tian, X., Sun, S., Jia, X., Zou, H., Li, S., Zhang, L. (2018). Epidemiology of and risk factors for infection with extended-spectrum &beta;-lactamase-producing carbapenem-resistant Enterobacteriaceae: results of a double case&ndash;control study. Infection and Drug Resistance, 11, 1339–1346. doi: https://doi.org/10.2147/idr.s173456
  31. Kramer, A., Dissemond, J., Kim, S., Willy, C., Mayer, D., Papke, R. et al. (2017). Consensus on Wound Antisepsis: Update 2018. Skin Pharmacology and Physiology, 31 (1), 28–58. doi: https://doi.org/10.1159/000481545
  32. Yousefian, F., Hesari, R., Jensen, T., Obagi, S., Rgeai, A., Damiani, G. et al. (2023). Antimicrobial Wound Dressings: A Concise Review for Clinicians. Antibiotics, 12 (9), 1434. doi: https://doi.org/10.3390/antibiotics12091434
  33. Nazarchuk, O. (2019). Research of antimicrobial efficacy of modern antiseptic agents based on decamethoxine and povidone-iodine. Perioperaciina Medicina, 2 (1), 6–10. doi: https://doi.org/10.31636/prmd.v2i1.1
  34. Garcia, L. V., Silva, D., Costa, M. M., Armés, H., Salema-Oom, M., Saramago, B., Serro, A. P. (2023). Antiseptic-Loaded Casein Hydrogels for Wound Dressings. Pharmaceutics, 15 (2), 334. doi: https://doi.org/10.3390/pharmaceutics15020334
  35. Eberlein, T., Haemmerle, G., Signer, M., Gruber-Moesenbacher, U., Traber, J., Mittlboeck, M., Abel, M., Strohal, R. (2012). Comparison of PHMB-containing dressing and silver dressings in patients with critically colonised or locally infected wounds. Journal of Wound Care, 2 1(1), 12–20. doi: https://doi.org/10.12968/jowc.2012.21.1.12
  36. Dydak, K., Junka, A., Dydak, A., Brożyna, M., Paleczny, J., Fijalkowski, K. et al. (2021). In Vitro Efficacy of Bacterial Cellulose Dressings Chemisorbed with Antiseptics against Biofilm Formed by Pathogens Isolated from Chronic Wounds. International Journal of Molecular Sciences, 22 (8), 3996. doi: https://doi.org/10.3390/ijms22083996
  37. Rippon, M. G., Rogers, A. A., Ousey, K. (2023). Polyhexamethylene biguanide and its antimicrobial role in wound healing: a narrative review. Journal of Wound Care, 32 (1), 5–20. doi: https://doi.org/10.12968/jowc.2023.32.1.5
Evaluation of antimicrobial activity of biomaterials based on alginate and decametoxin against Staphylococus aureus and Escherichia coli

Downloads

Published

2023-12-29

How to Cite

Nazarchuk, O., & Denysko, T. (2023). Evaluation of antimicrobial activity of biomaterials based on alginate and decametoxin against Staphylococus aureus and Escherichia coli. ScienceRise: Biological Science, (4(37), 11–18. https://doi.org/10.15587/2519-8025.2023.298594

Issue

Section

Biological research