Decomposition dynamics of the wrack of different origin in the black sea sandy littoral
DOI:
https://doi.org/10.15587/2519-8025.2016.72901Keywords:
decomposition, wracks, organic matter, microorganisms, ciliates, insectsAbstract
The role of sand interstitial community in process of decomposition of different origin wrack (seaweed, seagrass and mussel) are considered in with the results of laboratory experiments. Quantitative changes of organic matter content, bacteria, marine fungi, microalgae, flagellates, ciliates and insects in wrack and underlying sand are studied. The results obtained in the laboratory closed to the natural conditions
References
- Riedl, R. J., Machan, R. (1972). Hydrodynamic patterns in lotic intertidal sands and their bioclimatological implications. Marine Biology, 13 (3), 179–209. doi: 10.1007/bf00391378
- McLachlan, A., Eliot, I. G., Clarke, D. J. (1985). Water filtration through reflective microtidal beaches and shallow sublittoral sands and its implications for an inshore ecosystem in Western Australia. Estuarine, Coastal and Shelf Science, 21 (1), 91–104. doi: 10.1016/0272-7714(85)90008-3
- McLachlan, A., Turner, I. (1994). The Interstitial Environment of Sandy Beaches. Marine Ecology, 15 (3-4), 177–212. doi: 10.1111/j.1439-0485.1994.tb00053.x
- Snigireva, A. A., Aleksandrov, B. G. (2010). Impact of shore protection works on microflora of Odessa Gulf coast (Black Sea). Research notes of Ternopol Univ. Ser. Biol., 3, 253–256.
- Knox, G. A. (2000). The ecology of seashores. New York: CRC Press LLC, 557. doi: 10.1201/9781420042634
- McLachlan, A., Brown, A. C. (2006). The ecology of sandy shores. Acad. Press, Elsevier, 373.
- Smith, B. D., Foreman, R. E. (1984). An assessment of seaweed decomposition within a southern Strait of Georgia seaweed community. Marine Biology, 84 (2), 197–205. doi: 10.1007/bf00393005
- Mews, M., Zimmer, M., Jelinski, D. (2006). Species-specific decomposition rates of beach-cast wrack in Barkley Sound, British Columbia, Canada. Marine Ecology Progress Series, 328, 155–160. doi: 10.3354/meps328155
- Koop, K., Newell, R., Lucas, M. (1982). Biodegradation and Carbon Flow Based on Kelp (Ecklonia maxima) Debris in a Sandy Beach Microcosm. Marine Ecology Progress Series 7, 315–326. doi: 10.3354/meps007315
- MacLachlan, A., McGwynne, L. (1986). Do sandy beaches accumulate nitrogen? Marine Ecology Progress Series, 34, 191–195. doi: 10.3354/meps034191
- Pregnall, A., Miller, S. (1988). Flux of ammonium from surf-zone and nearshore sediments in Nahant Bay, Massachusetts, USA, in relation to free-living Pilayella littoralis. Marine Ecology Progress Series, 50, 161–167. doi: 10.3354/meps050161
- Linley, E., Newell, R., Bosma, S. (1981). Heterotrophic Utilisation of Mucilage Released During Fragmentation of Kelp (Ecklonia maxima and Laminana pallida). I. Development of Microbial Communities Associated with the Degradation of Kelp Mucilage. Marine Ecology Progress Series, 4, 31–41. doi: 10.3354/meps004031
- Lucas, M., Newell, R., Velimirov, B. (1981). Heterotrophic Utilisation of Mucilage Released During Fragmentation of Kelp (Ecklonia maxima and Laminana pallida) II. Differential Utilisation of Dissolved Organic Components from Kelp Mucilage. Marine Ecology Progress Series, 4, 43–55. doi: 10.3354/meps004043
- Stuart, V., Lucas, M., Newell, R. (1981). Heterotrophic Utilisation of Particulate Matter from the Kelp Laminaria pallida. Marine Ecology Progress Series, 4, 337–348. doi: 10.3354/meps004337
- Chilton, E. W., Lowe, R. L., Schurr, K. M. (1986). Invertebrate Communities Associated with Bangia Atropurpurea and Cladophora Glomerata in Western Lake Erie. Journal of Great Lakes Research, 12 (3), 149–153. doi: 10.1016/s0380-1330(86)71713-9
- Hamels, I., Moens, T., Muylaert, K., Vyverman, W. (2001). Trophic interactions between ciliates and nematodes from an intertidal flat. Aquatic Microbial Ecology, 26, 61–72. doi: 10.3354/ame026061
- Blinova, E. I., Saburin, M. Yu. (2005). Macroalgal wrack: condition to the formation and the impact on the ecological state of the sea (in the case of Anapa Bay, Black Sea). Trudy VNIRO, 144, 286–293.
- Komissarova, N. Yu. (1989). Modern domestic and foreign production from seaweed. Overview. Fisheries. Series: Processing of fish and seafood, 4, 45.
- State Standards. Algae, sea-grass and products of their processing. Methods of analysis (1984). Moscow, 53.
- Romankevich, E. A. (Ed.) (1980). Methods of organic matter investigation in the ocean. Moscow: Nauka Publ., 343.
- Petkevich, T. A. (1990). Microelements in cultivated mussels of the Odessa Gulf. J. Ekologia moria, 36, 49–54.
- Menkina, P. A. (1950). Organic phosphorus compounds mineralizing bacteria. J. Microbiology, 19 (4), 308–315.
- Bryantseva, Yu. V., Kurilov, A. V. (2003). Calculation of the cells volume of algae and plankton ciliates of the Black Sea. Methodological Guide. Sevastopol: IBSS, 23.
- Zvyagintsev, D. G. (Ed.) (1991). Methods of soil mycology and biochemistry. Moscow: Moscow University Publ., 309.
- Wasser, S. P., Kondratyeva, N. V. (Eds.) (1989). Algae. Kiev: Naukova Dumka Publ., 176–177.
- Arsan, O. M., Davydov, O. A., Dyachenko, T. M., Evtushenko, N. Yu., Zhukinsky, V. M., Kyrpenko, N. I.; Romanenko, V. D. (Ed.) (2006). Methods of hydroecological investigations of surface water. Kyiv: LOGO Publ., 33–37.
- Bryantseva, Yu. V., Lyakh, A. M., Sergeeva, A. V. (2005). Calculation of volume and surface area of unicellular algae of the Black Sea. Sevastopol: IBSS, 25.
- Diatoms of the USSR. Issue 1 (1974). Leningrad: Nauka Publ., 116.
- Asaul, Z. I. (1975). Identification guide for Euglenophyta of Ukrainian SSR. Kiev, 408.
- Vetrova, Z. I. (1980). Colorless Euglenophyta of Ukraine. Kiev: Naukova Dumka Publ., 182.
- Zhukov, B. F. (1993). Atlas of freshwater heterotrophic flagellates (biology, ecology and systematics). Rybinsk: IBIW RAS, 160.
- Al-Yamani, F. Y., Saburova, M. (2010). Illustrated Guide on the Flagellates of Kuwait’s Intertidal Soft Sediments. Kuwait Institute for Scientific Research, 197.
- Mylnikov, A. P., Kosolapova, N. G., Mylnikov, A. A. (2002). Planktonic Heterotrophic Flagellates of Small Water Bodies in the Yaroslavl Province. J. Entomol. Rev., 82 (1), 271–280.
- Vørs, N. (1992). Heterotrophic Amoebae, Flagellates and Heliozoa from the Tvärminne Area, Gulf of Finland, in 1988–1990. Ophelia, 36 (1), 1–109. doi: 10.1080/00785326.1992.10429930
- Lee, W. J., Patterson, D. J. (2000). Heterotrophic flagellates (Protista) from marine sediments of Botany Bay, Australia. Journal of Natural History, 34 (4), 483–562. doi: 10.1080/002229300299435
- Uhlig, G. (1964). Eine einfache Methode zur Extraktion der vagilen, mesopsammalen Mikrofauna. Helgolander Wiss. Meeresunters, 11 (3-4), 178–185. doi: 10.1007/bf01612370
- Foissner, W., Berger, H., Shaumburg, J. (1999). Identification and Ecology of Limnetic Plankton Ciliates. Munich: Informationsberichte des Bayer. Lamdesamtes für Wasserwirtschaft, 9–26.
- Ma, H., Choi, J. K., Song, W. (2003). An improved silver carbonate impregnation for marine ciliated protozoa. J. Acta Protozool, 42 (2), 161–164.
- Carey, P. G. (1992). Marine Interstitial Ciliates: An Illustrated Key. London; New York: Chapman Hall, 351.
- Mycology. Guidelines for special course under section "Ecology of fungi and fungi-like organisms" (2011). Minsk: “Biology”, 47.
- Choi, H. G., Lee, J. H., Park, H. H., Sayegh, F. A. Q. (2009). Antioxidant and antimicrobial activity of Zostera marina L. extract. ALGAE, 24 (3), 179–184. doi: 10.4490/algae.2009.24.3.179
- Stanley, M. S., Callow, M. E., Perry, R., Alberte, R. S., Smith, R., Callow, J. A. (2002). Inhibition of Fungal Spore Adhesion by Zosteric Acid as the Basis for a Novel, Nontoxic Crop Protection Technology. Phytopathology, 92 (4), 378–383. doi: 10.1094/phyto.2002.92.4.378
- Harrison, P. G., Chan, A. T. (1980). Inhibition of the growth of micro-algae and bacteria by extracts of eelgrass (Zostera marina) leaves. Marine Biology, 61 (1), 21–26. doi: 10.1007/bf00410338
- Harrison, P. G., Durance, C. D. (1985). Reductions in photosynthetic carbon uptake in epiphytic diatoms by water-soluble extracts of leaves of Zostera marina. Marine Biology, 90 (1), 117–119. doi: 10.1007/bf00428222
- Arndt, H., Dietrich, D., Auer, B., Cleven, E.-J., Gräfenhan, T., Weitere, M., Mylnikov, A.; Leadbeater, B. S. C., Green, J. C. (Eds.) (2000). Functional diversity of heterotrophic flagellates in aquatic ecosystems. The flagellates: unity, diversity and evolution. London; New York: Taylor and Francis, 240–268.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Boris Alexandrov, Vasiliy Dyadichko, Olga Garkusha, Galyna Ivanovych, Nadezhda Kopytina, Alexander Kurilov, Lydia Nidzvetska, Svetlana Nikonova, Anna Tropivska, Iryna Serbinova
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.