Decomposition dynamics of the wrack of different origin in the black sea sandy littoral

Authors

  • Boris Alexandrov Institute of Marine Biology National Academy of Scientist of Ukraine Pushkinskaya str., 37, Odessa, Ukraine, 65011, Ukraine https://orcid.org/0000-0001-7969-2828
  • Vasiliy Dyadichko Institute of Marine Biology National Academy of Scientist of Ukraine Pushkinskaya str., 37, Odessa, Ukraine, 65011, Ukraine
  • Olga Garkusha Institute of Marine Biology National Academy of Scientist of Ukraine Pushkinskaya str., 37, Odessa, Ukraine, 65011, Ukraine
  • Galyna Ivanovych Institute of Marine Biology National Academy of Scientist of Ukraine Pushkinskaya str., 37, Odessa, Ukraine, 65011, Ukraine
  • Nadezhda Kopytina Institute of Marine Biology National Academy of Scientist of Ukraine Pushkinskaya str., 37, Odessa, Ukraine, 65011, Ukraine
  • Alexander Kurilov Institute of Marine Biology National Academy of Scientist of Ukraine Pushkinskaya str., 37, Odessa, Ukraine, 65011, Ukraine
  • Lydia Nidzvetska Institute of Marine Biology National Academy of Scientist of Ukraine Pushkinskaya str., 37, Odessa, Ukraine, 65011, Ukraine
  • Svetlana Nikonova Institute of Marine Biology National Academy of Scientist of Ukraine Pushkinskaya str., 37, Odessa, Ukraine, 65011, Ukraine
  • Anna Tropivska Institute of Marine Biology National Academy of Scientist of Ukraine Pushkinskaya str., 37, Odessa, Ukraine, 65011, Ukraine
  • Iryna Serbinova Institute of Marine Biology National Academy of Scientist of Ukraine Pushkinskaya str., 37, Odessa, Ukraine, 65011, Ukraine

DOI:

https://doi.org/10.15587/2519-8025.2016.72901

Keywords:

decomposition, wracks, organic matter, microorganisms, ciliates, insects

Abstract

The role of sand interstitial community in process of decomposition of different origin wrack (seaweed, seagrass and mussel) are considered in with the results of laboratory experiments. Quantitative changes of organic matter content, bacteria, marine fungi, microalgae, flagellates, ciliates and insects in wrack and underlying sand are studied. The results obtained in the laboratory closed to the natural conditions

Author Biographies

Boris Alexandrov, Institute of Marine Biology National Academy of Scientist of Ukraine Pushkinskaya str., 37, Odessa, Ukraine, 65011

Director, Professor, Corresponding Member of NAS of Ukraine

Vasiliy Dyadichko, Institute of Marine Biology National Academy of Scientist of Ukraine Pushkinskaya str., 37, Odessa, Ukraine, 65011

Researche Assoushiated, Ph.D.

Olga Garkusha, Institute of Marine Biology National Academy of Scientist of Ukraine Pushkinskaya str., 37, Odessa, Ukraine, 65011

Researcher

Galyna Ivanovych, Institute of Marine Biology National Academy of Scientist of Ukraine Pushkinskaya str., 37, Odessa, Ukraine, 65011

Senior Researcher, Ph.D.

Nadezhda Kopytina, Institute of Marine Biology National Academy of Scientist of Ukraine Pushkinskaya str., 37, Odessa, Ukraine, 65011

Senior Researcher, Ph.D.

Alexander Kurilov, Institute of Marine Biology National Academy of Scientist of Ukraine Pushkinskaya str., 37, Odessa, Ukraine, 65011

Head of Laboratory, Ph.D.

Lydia Nidzvetska, Institute of Marine Biology National Academy of Scientist of Ukraine Pushkinskaya str., 37, Odessa, Ukraine, 65011

Leading engineer

Svetlana Nikonova, Institute of Marine Biology National Academy of Scientist of Ukraine Pushkinskaya str., 37, Odessa, Ukraine, 65011

Researcher

Anna Tropivska, Institute of Marine Biology National Academy of Scientist of Ukraine Pushkinskaya str., 37, Odessa, Ukraine, 65011

Leading engineer

Iryna Serbinova, Institute of Marine Biology National Academy of Scientist of Ukraine Pushkinskaya str., 37, Odessa, Ukraine, 65011

Leading engineer

References

  1. Riedl, R. J., Machan, R. (1972). Hydrodynamic patterns in lotic intertidal sands and their bioclimatological implications. Marine Biology, 13 (3), 179–209. doi: 10.1007/bf00391378
  2. McLachlan, A., Eliot, I. G., Clarke, D. J. (1985). Water filtration through reflective microtidal beaches and shallow sublittoral sands and its implications for an inshore ecosystem in Western Australia. Estuarine, Coastal and Shelf Science, 21 (1), 91–104. doi: 10.1016/0272-7714(85)90008-3
  3. McLachlan, A., Turner, I. (1994). The Interstitial Environment of Sandy Beaches. Marine Ecology, 15 (3-4), 177–212. doi: 10.1111/j.1439-0485.1994.tb00053.x
  4. Snigireva, A. A., Aleksandrov, B. G. (2010). Impact of shore protection works on microflora of Odessa Gulf coast (Black Sea). Research notes of Ternopol Univ. Ser. Biol., 3, 253–256.
  5. Knox, G. A. (2000). The ecology of seashores. New York: CRC Press LLC, 557. doi: 10.1201/9781420042634
  6. McLachlan, A., Brown, A. C. (2006). The ecology of sandy shores. Acad. Press, Elsevier, 373.
  7. Smith, B. D., Foreman, R. E. (1984). An assessment of seaweed decomposition within a southern Strait of Georgia seaweed community. Marine Biology, 84 (2), 197–205. doi: 10.1007/bf00393005
  8. Mews, M., Zimmer, M., Jelinski, D. (2006). Species-specific decomposition rates of beach-cast wrack in Barkley Sound, British Columbia, Canada. Marine Ecology Progress Series, 328, 155–160. doi: 10.3354/meps328155
  9. Koop, K., Newell, R., Lucas, M. (1982). Biodegradation and Carbon Flow Based on Kelp (Ecklonia maxima) Debris in a Sandy Beach Microcosm. Marine Ecology Progress Series 7, 315–326. doi: 10.3354/meps007315
  10. MacLachlan, A., McGwynne, L. (1986). Do sandy beaches accumulate nitrogen? Marine Ecology Progress Series, 34, 191–195. doi: 10.3354/meps034191
  11. Pregnall, A., Miller, S. (1988). Flux of ammonium from surf-zone and nearshore sediments in Nahant Bay, Massachusetts, USA, in relation to free-living Pilayella littoralis. Marine Ecology Progress Series, 50, 161–167. doi: 10.3354/meps050161
  12. Linley, E., Newell, R., Bosma, S. (1981). Heterotrophic Utilisation of Mucilage Released During Fragmentation of Kelp (Ecklonia maxima and Laminana pallida). I. Development of Microbial Communities Associated with the Degradation of Kelp Mucilage. Marine Ecology Progress Series, 4, 31–41. doi: 10.3354/meps004031
  13. Lucas, M., Newell, R., Velimirov, B. (1981). Heterotrophic Utilisation of Mucilage Released During Fragmentation of Kelp (Ecklonia maxima and Laminana pallida) II. Differential Utilisation of Dissolved Organic Components from Kelp Mucilage. Marine Ecology Progress Series, 4, 43–55. doi: 10.3354/meps004043
  14. Stuart, V., Lucas, M., Newell, R. (1981). Heterotrophic Utilisation of Particulate Matter from the Kelp Laminaria pallida. Marine Ecology Progress Series, 4, 337–348. doi: 10.3354/meps004337
  15. Chilton, E. W., Lowe, R. L., Schurr, K. M. (1986). Invertebrate Communities Associated with Bangia Atropurpurea and Cladophora Glomerata in Western Lake Erie. Journal of Great Lakes Research, 12 (3), 149–153. doi: 10.1016/s0380-1330(86)71713-9
  16. Hamels, I., Moens, T., Muylaert, K., Vyverman, W. (2001). Trophic interactions between ciliates and nematodes from an intertidal flat. Aquatic Microbial Ecology, 26, 61–72. doi: 10.3354/ame026061
  17. Blinova, E. I., Saburin, M. Yu. (2005). Macroalgal wrack: condition to the formation and the impact on the ecological state of the sea (in the case of Anapa Bay, Black Sea). Trudy VNIRO, 144, 286–293.
  18. Komissarova, N. Yu. (1989). Modern domestic and foreign production from seaweed. Overview. Fisheries. Series: Processing of fish and seafood, 4, 45.
  19. State Standards. Algae, sea-grass and products of their processing. Methods of analysis (1984). Moscow, 53.
  20. Romankevich, E. A. (Ed.) (1980). Methods of organic matter investigation in the ocean. Moscow: Nauka Publ., 343.
  21. Petkevich, T. A. (1990). Microelements in cultivated mussels of the Odessa Gulf. J. Ekologia moria, 36, 49–54.
  22. Menkina, P. A. (1950). Organic phosphorus compounds mineralizing bacteria. J. Microbiology, 19 (4), 308–315.
  23. Bryantseva, Yu. V., Kurilov, A. V. (2003). Calculation of the cells volume of algae and plankton ciliates of the Black Sea. Methodological Guide. Sevastopol: IBSS, 23.
  24. Zvyagintsev, D. G. (Ed.) (1991). Methods of soil mycology and biochemistry. Moscow: Moscow University Publ., 309.
  25. Wasser, S. P., Kondratyeva, N. V. (Eds.) (1989). Algae. Kiev: Naukova Dumka Publ., 176–177.
  26. Arsan, O. M., Davydov, O. A., Dyachenko, T. M., Evtushenko, N. Yu., Zhukinsky, V. M., Kyrpenko, N. I.; Romanenko, V. D. (Ed.) (2006). Methods of hydroecological investigations of surface water. Kyiv: LOGO Publ., 33–37.
  27. Bryantseva, Yu. V., Lyakh, A. M., Sergeeva, A. V. (2005). Calculation of volume and surface area of unicellular algae of the Black Sea. Sevastopol: IBSS, 25.
  28. Diatoms of the USSR. Issue 1 (1974). Leningrad: Nauka Publ., 116.
  29. Asaul, Z. I. (1975). Identification guide for Euglenophyta of Ukrainian SSR. Kiev, 408.
  30. Vetrova, Z. I. (1980). Colorless Euglenophyta of Ukraine. Kiev: Naukova Dumka Publ., 182.
  31. Zhukov, B. F. (1993). Atlas of freshwater heterotrophic flagellates (biology, ecology and systematics). Rybinsk: IBIW RAS, 160.
  32. Al-Yamani, F. Y., Saburova, M. (2010). Illustrated Guide on the Flagellates of Kuwait’s Intertidal Soft Sediments. Kuwait Institute for Scientific Research, 197.
  33. Mylnikov, A. P., Kosolapova, N. G., Mylnikov, A. A. (2002). Planktonic Heterotrophic Flagellates of Small Water Bodies in the Yaroslavl Province. J. Entomol. Rev., 82 (1), 271–280.
  34. Vørs, N. (1992). Heterotrophic Amoebae, Flagellates and Heliozoa from the Tvärminne Area, Gulf of Finland, in 1988–1990. Ophelia, 36 (1), 1–109. doi: 10.1080/00785326.1992.10429930
  35. Lee, W. J., Patterson, D. J. (2000). Heterotrophic flagellates (Protista) from marine sediments of Botany Bay, Australia. Journal of Natural History, 34 (4), 483–562. doi: 10.1080/002229300299435
  36. Uhlig, G. (1964). Eine einfache Methode zur Extraktion der vagilen, mesopsammalen Mikrofauna. Helgolander Wiss. Meeresunters, 11 (3-4), 178–185. doi: 10.1007/bf01612370
  37. Foissner, W., Berger, H., Shaumburg, J. (1999). Identification and Ecology of Limnetic Plankton Ciliates. Munich: Informationsberichte des Bayer. Lamdesamtes für Wasserwirtschaft, 9–26.
  38. Ma, H., Choi, J. K., Song, W. (2003). An improved silver carbonate impregnation for marine ciliated protozoa. J. Acta Protozool, 42 (2), 161–164.
  39. Carey, P. G. (1992). Marine Interstitial Ciliates: An Illustrated Key. London; New York: Chapman Hall, 351.
  40. Mycology. Guidelines for special course under section "Ecology of fungi and fungi-like organisms" (2011). Minsk: “Biology”, 47.
  41. Choi, H. G., Lee, J. H., Park, H. H., Sayegh, F. A. Q. (2009). Antioxidant and antimicrobial activity of Zostera marina L. extract. ALGAE, 24 (3), 179–184. doi: 10.4490/algae.2009.24.3.179
  42. Stanley, M. S., Callow, M. E., Perry, R., Alberte, R. S., Smith, R., Callow, J. A. (2002). Inhibition of Fungal Spore Adhesion by Zosteric Acid as the Basis for a Novel, Nontoxic Crop Protection Technology. Phytopathology, 92 (4), 378–383. doi: 10.1094/phyto.2002.92.4.378
  43. Harrison, P. G., Chan, A. T. (1980). Inhibition of the growth of micro-algae and bacteria by extracts of eelgrass (Zostera marina) leaves. Marine Biology, 61 (1), 21–26. doi: 10.1007/bf00410338
  44. Harrison, P. G., Durance, C. D. (1985). Reductions in photosynthetic carbon uptake in epiphytic diatoms by water-soluble extracts of leaves of Zostera marina. Marine Biology, 90 (1), 117–119. doi: 10.1007/bf00428222
  45. Arndt, H., Dietrich, D., Auer, B., Cleven, E.-J., Gräfenhan, T., Weitere, M., Mylnikov, A.; Leadbeater, B. S. C., Green, J. C. (Eds.) (2000). Functional diversity of heterotrophic flagellates in aquatic ecosystems. The flagellates: unity, diversity and evolution. London; New York: Taylor and Francis, 240–268.

Downloads

Published

2016-07-01

How to Cite

Alexandrov, B., Dyadichko, V., Garkusha, O., Ivanovych, G., Kopytina, N., Kurilov, A., Nidzvetska, L., Nikonova, S., Tropivska, A., & Serbinova, I. (2016). Decomposition dynamics of the wrack of different origin in the black sea sandy littoral. ScienceRise: Biological Science, (1 (1), 8–20. https://doi.org/10.15587/2519-8025.2016.72901

Issue

Section

Biological Sciences