Investigation of the influence of salicylic acid on the causes of bacterial diagnostics of tomatoes

Authors

DOI:

https://doi.org/10.15587/2519-8025.2017.99815

Keywords:

tomatoes, agents of bacterial diseases, salicylic acid, antibacterial activity, plant protection

Abstract

The aim of this work was to investigate the ability of the SA to inhibit the growth of strains of Xanthomonas vesicatoria, Pseudomonas syringae pv. tomato and Clavibacter michiganensis subsp. michiganensis in nutrient media and suppress the development of bacterial black spot, bacterial spotting and bacterial cancer in tomato plants in terms of artificial infection.

Methods. Virulence of strains of X. vesicatoria, P. syringae pv. tomato and C. michiganensis subsp. michiganensis in laboratory environment was determined by artificial infection of stalks and leaves of tomato plants by injection. Accounting of strains aggression was carried out using the 10-point scale. SA on bacteria was studied by perforation method.

Result. The author has established antibacterial effect of salicylic acid on the pathogens of tomato bacterial cancer, black bacterial spot and bacterial spotting in the medium, and its potential possibilities of disease inhibition in terms of artificial inoculation. It is established an authoritative increase in areas of stunted growth of pathogen strains with salicylic acid in proportion with the increase of its concentration. SA application has reduced the degree of development of tomato bacterial diseases by 8–65 % in terms of the artificial inoculation. Spraying tomato plants with SA solution was more effective than root soaking.

Conclusions. SA solutions showed high antibacterial activity against pathogens of bacterial cancer C. michiganensis subsp. michiganensis and bacterial black spot X. vesicatoria with no growth zone of 70–80 mm. Increased SA concentrations caused the increased effectiveness of inhibition of tomato plants bacterial diseases

Author Biography

Yulia Kolomiets, National University of Life and Environmental Sciences of Ukraine Geroyiv Oborony str., 15, Kyiv, Ukraine, 03041

PhD, Associate Professor

Department of environmental biotechnology and biodiversity

References

  1. Vasyukova, N. I., Ozeretskovskaya, O. L. (2007). Induced plant resistance and salicylic acid: A review. Applied Biochemistry and Microbiology, 43 (4), 367–373. doi: 10.1134/s0003683807040011
  2. Kolupaev, Yu. E., Yastreb, T. O. (2013). Stress-protektornye effekty salitsilovoy kisloty i ee strukturnykh analogov [Stress-protektornye effekty salitsilovoy kisloty i ee strukturnykh analogov]. Fiziologiya i biokhimiya kul'turnykh rasteniy [Physiology and biochemistry of cultivated plants], 45 (2), 113–126.
  3. Hvozdiak, R. I., Pasichnyk, L. A., Yakovleva, L. M., Patyka, V. P. et. al.; Patyka, V. P. (Ed.) (2011). Fitopatohenni bakterii. Bakterialni khvoroby roslyn [Phytopathogenic bacteria. Bacterial plant diseases]. Кyiv: TOV NVP «Interservis», 444.
  4. Ignatov, A. I., Punina, N. V., Matveeva, E. V., Kornev, K. P. (2009). Novye vozbuditeli bakteriozov i prognoz ikh rasprostraneniya v Rossii [New pathogens of bacterial infections and the prognosis of their spread in Russia]. Zashchita i karantin rasteniy [Protection and quarantine of plants], 4, 38–40.
  5. Bykova, G. A., Belykh, E. B. (2011). Osobennosti zashchity ovoshchnykh kul'tur v teplitsakh ot bakteriozov [Features of protection of vegetable crops in greenhouses against bacteriosis]. Zashchita i karantin rasteniy [Protection and quarantine of plants], 3, 32–35.
  6. Shafikova, T. N., Omelichkina, Y. V. (2015). Molecular–genetic aspects of plant immunity to phytopathogenic bacteria and fungi. Russian Journal of Plant Physiology, 62 (5), 571–585. doi: 10.1134/s1021443715050143
  7. Plotnikova, L. Y. (2009). Effect of benzothiadiazole, an inducer of systemic acquired resistance, on the pathogenesis of wheat brown rust. Russian Journal of Plant Physiology, 56 (4), 517–526. doi: 10.1134/s1021443709040116
  8. Poliksenova, V. D. (2009). Indutsirovannaya ustoychivost' rasteniy k patogenam i abioticheskim stressovym faktoram [Induced plant resistance to pathogens and abiotic stress factors]. Vestnik BGU [Bulletin BSU], 1, 48–60.
  9. Kolomiiets, Yu. V., Hryhoriuk, I. P., Butsenko, L. M. (2016). Efektyvnist vplyvu salitsylovoi kysloty na komponenty antyoksydantnoi systemy roslyn sortiv tomata za umov bakterialnoho stresu [The effect of salicylic acid on the components of the antioxidant system of tomato plants in conditions of bacterial stress]. Karantyn i zakhyst roslyn [Quarantine and plant protection], 11-12, 7–11.
  10. Zakharova, O. M., Melnychuk, M. D., Dankevych, L. A., Patyka, V. P. (2012). Bakterialni khvoroby ripaku [Bacterial diseases of rape]. Mikrobiologicheskiy zhurnal [Microbiological Journal], 74 (6), 46–52.
  11. Egorov, N. S. (2004). Osnovy ucheniya ob antibiotikakh [Fundamentals of theory of antibiotics]. Moscow: Izdatel'stvovo MGU Nauka, 528.
  12. Hryhoriuk, I. P., Patyka, V. P., Kolomiiets, Yu. V., Butsenko, L. M. et. al. (2016). Vyiavlennia ta identyfikatsiia zbudnyka bakterialnoi krapchastosti roslyn tomata Pseudomonas syringae pv. tomato [Identification of the agent of bacterial speck of tomato plants Pseudomonas syringae pv. tomato]. Kyiv: Komprint, 40.
  13. AL-Saleh, M. A. (2011). Pathogenic variability among five bacterial isolates of Xanthomonas campestris pv. vesicatoria, causing spot disease on tomato and their response to salicylic acid. Journal of the Saudi Society of Agricultural Sciences, 10 (1), 47–51. doi: 10.1016/j.jssas.2010.08.001
  14. Kulikov, S. N., Tyurin, Yu. A., Ilina, A. V., Levov, A. N., Lopatyn, S. A., Varlamov, V. P. (2009). Antibacterial activity of chitosan and its derivatives. Proceedings of the Belarusian State University, 4 (1). Available at: http://elib.bsu.by/handle/123456789/16155
  15. Liu, H., Du, Y., Wang, X., Sun, L. (2004). Chitosan kills bacteria through cell membrane damage. International Journal of Food Microbiology, 95 (2), 147–155. doi: 10.1016/j.ijfoodmicro.2004.01.022
  16. Raafat, D., Bargen, K., Haas, A., Sahl, H.-G. (2008). Insights into the Mode of Action of Chitosan as an Antibacterial Compound. Applied and Environmental Microbiology, 74 (12), 3764–3773. doi: 10.1128/aem.00453-08
  17. Rasmussen, J. B., Hammerschmidt, R., Zook, M. N. (1991). Systemic Induction of Salicylic Acid Accumulation in Cucumber after Inoculation with Pseudomonas syringae pv syringae. Plant physiology, 97 (4), 1342–1347. doi: 10.1104/pp.97.4.1342
  18. Palva, T. K., Huntig, M., Saindrenan, P., Palva, E. T. (1994). Salicylic acid induced resistance to Erwinia carotovora subsp. carotovora in Tobacco. Molecular Plant-Microbe Interactions, 7 (3), 356–363. doi: 10.1094/mpmi-7-0356
  19. Tyuterev, S. L. (2015). Ekologicheski bezopasnye induktory ustoychivosti rasteniy k boleznyam i fiziologicheskim stressam [Ecologically safe inductors of plant resistance to diseases and physiological stresses]. Vestnik zashchity rasteniy [Journal of Plant Protection], 1 (83), 3–13.

Downloads

Published

2017-04-26

How to Cite

Kolomiets, Y. (2017). Investigation of the influence of salicylic acid on the causes of bacterial diagnostics of tomatoes. ScienceRise: Biological Science, (2 (5), 14–18. https://doi.org/10.15587/2519-8025.2017.99815

Issue

Section

Biological Sciences