Brain cortex activation during the execution of the motor task in subjects with acute cerebrovascular accident
DOI:
https://doi.org/10.15587/2519-8025.2018.132992Keywords:
brain, acute cerebrovascular accident, functional MRI, motor cortexAbstract
We propose the analysis of the peculiarities of the hemodynamic fMRI response in healthy subjects and in acute cerebrovascular accident patients under the movement execution for evaluation of fMRI brain cortex mapping applicability in acute stroke. Five groups of patients were studied with fMRI: first group consisted of 18 healthy subjects, second group consisted of 3 stroke patients with the left hemisphere central sulcus lesion location, third group consisted of 3 patients with the left hemisphere periventricular white matter lesion location, fourth group consisted of 3 patients with the right cerebellar hemisphere lesion location, fifth groups consisted of 2 stroke patients with the left hemisphere supramarginal gyrus lesion location. Right hand finger tapping task was used for the fMRI activation. Data was analyzed with the FSL software. Common regions of activation were located at the contralateral primary sensorimotor cortex, supplementary motor area and cerebellum. Additional regions of activation in stroke patients were located at the ipsilateral sensorimotor cortex, fronto-parietal and premotor cortex, bilateral cerebellum, and the subthalamic nuclei. Stroke-related migration of the activation regions in the supramarginal gyrus and ventral premotor cortex of the mirror neuron system was found during the audio-motor transformation. Regions of brain activation were found adjacent to the DWI hyper intense ischemic regions during the movement execution. But at the most DWI hyperintense focuses no fMRI activation was found. We have found out correlation of the maximal BOLD signal amplitude change and the total volume of brain activation. It was shown that fMRI allows visualization of the main cortical motor control regions in acute stroke. Additional regions of cortical motor control have to be involved in acute stroke. Adjacent to the DWI hyper intense regions of activation were found
References
- Omel’chenko, A. N., Makarchuk, N. E. (2017). fMRI Visualization of Functional Patterns of Neural Networks during the Performance of Cyclic Finger Movements: Age-Related Peculiarities. Neurophysiology, 49 (5), 372–383. doi: http://doi.org/10.1007/s11062-018-9697-3
- Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A.-S., White, L. E. (Eds.) (2012). Neuroscience. Sunderland: Sinauer Associates, 759.
- Flanders, M. (2011). What is the biological basis of sensorimotor integration? Biological Cybernetics, 104 (1-2), 1–8. doi: http://doi.org/10.1007/s00422-011-0419-9
- Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286 (5449), 2526–2528. doi: http://doi.org/10.1126/science.286.5449.2526
- Gazzola, V., Keysers, C. (2008). The Observation and Execution of Actions Share Motor and Somatosensory Voxels in all Tested Subjects: Single-Subject Analyses of Unsmoothed fMRI Data. Cerebral Cortex, 19 (6), 1239–1255. doi: http://doi.org/10.1093/cercor/bhn181
- Warren, J. E., Wise, R. J. S., Warren, J. D. (2005). Sounds do-able: auditory–motor transformations and the posterior temporal plane. Trends in Neurosciences, 28 (12), 636–643. doi: http://doi.org/10.1016/j.tins.2005.09.010
- Kuznetsova, S., Kuznetsov, V., Vorobey, M. (2005). Tiotsetam influence on CNS functional state of the patients undergone stroke. The news of medicine and pharmacy, 2, 6–7.
- Zozulya, I., Zozulya, A. (2011). The epidemiology of cerebrovascular diseases in Ukraine. Annuals of Ukrainian medicine, 5. Available at: https://www.umj.com.ua/article/19153/epidemiologiya-cerebrovaskulyarnix-zaxvoryuvan-v-ukraini
- Weimar, C., Kurth, T., Kraywinkel, K., Wagner, M., Busse, O., Haberl, R. L., Diener, H.-C. (2002). Assessment of Functioning and Disability After Ischemic Stroke. Stroke, 33 (8), 2053–2059. doi: http://doi.org/10.1161/01.str.0000022808.21776.bf
- Lai, S.-M., Studenski, S., Duncan, P. W., Perera, S. (2002). Persisting Consequences of Stroke Measured by the Stroke Impact Scale. Stroke, 33 (7), 1840–1844. doi: http://doi.org/10.1161/01.str.0000019289.15440.f2
- Gusev, E., Skvortsova, E., Martynov, M. (2003). Cerebral stroke: problems and solutions. Annals of RAMS, 11, 44–48.
- Van Heerden, J., Desmond, P. M., Phal, P. M. (2014). Functional MRI in clinical practice: A pictorial essay. Journal of Medical Imaging and Radiation Oncology, 58 (3), 320–326. doi: http://doi.org/10.1111/1754-9485.12158
- Srinivasan, A., Goyal, M., Azri, F. A., Lum, C. (2006). State-of-the-Art Imaging of Acute Stroke. RadioGraphics, 26, 75–95. doi: http://doi.org/10.1148/rg.26si065501
- Altamura, C., Reinhard, M., Vry, M.-S., Kaller, C. P., Hamzei, F., Vernieri, F. et. al. (2009). The longitudinal changes of BOLD response and cerebral hemodynamics from acute to subacute stroke. A fMRI and TCD study. BMC Neuroscience, 10 (1), 151. doi: http://doi.org/10.1186/1471-2202-10-151
- Jackman, K., Iadecola, C. (2015). Neurovascular Regulation in the Ischemic Brain. Antioxidants & Redox Signaling, 22 (2), 149–160. doi: http://doi.org/10.1089/ars.2013.5669
- Schlaug, G., Siewert, B., Benfield, A., Edelman, R. R., Warach, S. (1997). Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurology, 49 (1), 113–119. doi: http://doi.org/10.1212/wnl.49.1.113
- Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J.-P., Frith, C. D., Frackowiak, R. S. J. (1994). Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping, 2 (4), 189–210. doi: http://doi.org/10.1002/hbm.460020402
- Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453 (7197), 869–878. doi: http://doi.org/10.1038/nature06976
- Van Gelderen, P., Ramsey, N. F., Liu, G., Duyn, J. H., Frank, J. A., Weinberger, D. R., Moonen, C. T. (1995). Three-dimensional functional magnetic resonance imaging of human brain on a clinical 1.5-T scanner. Proceedings of the National Academy of Sciences, 92 (15), 6906–6910. doi: http://doi.org/10.1073/pnas.92.15.6906
- Zarahn, E., Alon, L., Ryan, S. L., Lazar, R. M., Vry, M.-S., Weiller, C. et. al. (2011). Prediction of Motor Recovery Using Initial Impairment and fMRI 48 h Poststroke. Cerebral Cortex, 21 (12), 2712–2721. doi: http://doi.org/10.1093/cercor/bhr047
- Jueptner, M., Weiller, C. (1995). Review: Does Measurement of Regional Cerebral Blood Flow Reflect Synaptic Activity?–Implications for PET and fMRI. NeuroImage, 2 (2), 148–156. doi: http://doi.org/10.1006/nimg.1995.1017
- Moonen, C. T. W., Bandettini, P. A. (2000). Functional MRI. Medical radiology. New York: Springer, 575. doi: http://doi.org/10.1007/978-3-642-58716-0
- Sibson, N. R., Dhankhar, A., Mason, G. F., Rothman, D. L., Behar, K. L., Shulman, R. G. (1998). Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proceedings of the National Academy of Sciences, 95 (1), 316–321. doi: http://doi.org/10.1073/pnas.95.1.316
- Rijntjes, M., Dettmers, C., Buchel, C., Kiebel, S., Frackowiak, R. S. J., Weiller, C. (1999). A Blueprint for Movement: Functional and Anatomical Representations in the Human Motor System. The Journal of Neuroscience, 19 (18), 8043–8048. doi: http://doi.org/10.1523/jneurosci.19-18-08043.1999
- Mintzopoulos, D., Khanicheh, A., Konstas, A. A., Astrakas, L. G., Singhal, A. B., Moskowitz, M. A. et. al. (2008). Functional MRI of Rehabilitation in Chronic Stroke Patients Using Novel MR-Compatible Hand Robots. The Open Neuroimaging Journal, 2 (1), 94–101. doi: http://doi.org/10.2174/1874440000802010094
- Nechypurenko, N., Pashkovskaya, I., Musiyenko, Yu. (2008). Main pathophysiological mechanisms of the brain ischemia. Medical news, 1, 7–13.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Oleksii Omelchenko, Mykola Makarchuk
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.