Brain cortex activation during the execution of the motor task in subjects with acute cerebrovascular accident

Authors

  • Oleksii Omelchenko Educational and Scientific Center "Institute of Biology and Medicine" of Taras Shevchenko National University of Kyiv Volodymyrska str., 64/13, Kyiv, Ukraine, 01601, Ukraine https://orcid.org/0000-0002-0089-3166
  • Mykola Makarchuk Educational and Scientific Center "Institute of Biology and Medicine" of Taras Shevchenko National University of Kyiv Volodymyrska str., 64/13, Kyiv, Ukraine, 01601, Ukraine https://orcid.org/0000-0002-0982-3463

DOI:

https://doi.org/10.15587/2519-8025.2018.132992

Keywords:

brain, acute cerebrovascular accident, functional MRI, motor cortex

Abstract

We propose the analysis of the peculiarities of the hemodynamic fMRI response in healthy subjects and in acute cerebrovascular accident patients under the movement execution for evaluation of fMRI brain cortex mapping applicability in acute stroke. Five groups of patients were studied with fMRI: first group consisted of 18 healthy subjects, second group consisted of 3 stroke patients with the left hemisphere central sulcus lesion location, third group consisted of 3 patients with the left hemisphere periventricular white matter lesion location, fourth group consisted of 3 patients with the right cerebellar hemisphere lesion location, fifth groups consisted of 2 stroke patients with the left hemisphere supramarginal gyrus lesion location. Right hand finger tapping task was used for the fMRI activation. Data was analyzed with the FSL software. Common regions of activation were located at the contralateral primary sensorimotor cortex, supplementary motor area and cerebellum. Additional regions of activation in stroke patients were located at the ipsilateral sensorimotor cortex, fronto-parietal and premotor cortex, bilateral cerebellum, and the subthalamic nuclei. Stroke-related migration of the activation regions in the supramarginal gyrus and ventral premotor cortex of the mirror neuron system was found during the audio-motor transformation. Regions of brain activation were found adjacent to the DWI hyper intense ischemic regions during the movement execution. But at the most DWI hyperintense focuses no fMRI activation was found.  We have found out correlation of the maximal BOLD signal amplitude change and the total volume of brain activation. It was shown that fMRI allows visualization of the main cortical motor control regions in acute stroke. Additional regions of cortical motor control have to be involved in acute stroke. Adjacent to the DWI hyper intense regions of activation were found

Author Biographies

Oleksii Omelchenko, Educational and Scientific Center "Institute of Biology and Medicine" of Taras Shevchenko National University of Kyiv Volodymyrska str., 64/13, Kyiv, Ukraine, 01601

Postgraduate Student

Department of Physiology and Anatomy

Mykola Makarchuk, Educational and Scientific Center "Institute of Biology and Medicine" of Taras Shevchenko National University of Kyiv Volodymyrska str., 64/13, Kyiv, Ukraine, 01601

Doctor of Biological Sciences, Professor

Department of Physiology and Anatomy

References

  1. Omel’chenko, A. N., Makarchuk, N. E. (2017). fMRI Visualization of Functional Patterns of Neural Networks during the Performance of Cyclic Finger Movements: Age-Related Peculiarities. Neurophysiology, 49 (5), 372–383. doi: http://doi.org/10.1007/s11062-018-9697-3
  2. Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A.-S., White, L. E. (Eds.) (2012). Neuroscience. Sunderland: Sinauer Associates, 759.
  3. Flanders, M. (2011). What is the biological basis of sensorimotor integration? Biological Cybernetics, 104 (1-2), 1–8. doi: http://doi.org/10.1007/s00422-011-0419-9
  4. Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286 (5449), 2526–2528. doi: http://doi.org/10.1126/science.286.5449.2526
  5. Gazzola, V., Keysers, C. (2008). The Observation and Execution of Actions Share Motor and Somatosensory Voxels in all Tested Subjects: Single-Subject Analyses of Unsmoothed fMRI Data. Cerebral Cortex, 19 (6), 1239–1255. doi: http://doi.org/10.1093/cercor/bhn181
  6. Warren, J. E., Wise, R. J. S., Warren, J. D. (2005). Sounds do-able: auditory–motor transformations and the posterior temporal plane. Trends in Neurosciences, 28 (12), 636–643. doi: http://doi.org/10.1016/j.tins.2005.09.010
  7. Kuznetsova, S., Kuznetsov, V., Vorobey, M. (2005). Tiotsetam influence on CNS functional state of the patients undergone stroke. The news of medicine and pharmacy, 2, 6–7.
  8. Zozulya, I., Zozulya, A. (2011). The epidemiology of cerebrovascular diseases in Ukraine. Annuals of Ukrainian medicine, 5. Available at: https://www.umj.com.ua/article/19153/epidemiologiya-cerebrovaskulyarnix-zaxvoryuvan-v-ukraini
  9. Weimar, C., Kurth, T., Kraywinkel, K., Wagner, M., Busse, O., Haberl, R. L., Diener, H.-C. (2002). Assessment of Functioning and Disability After Ischemic Stroke. Stroke, 33 (8), 2053–2059. doi: http://doi.org/10.1161/01.str.0000022808.21776.bf
  10. Lai, S.-M., Studenski, S., Duncan, P. W., Perera, S. (2002). Persisting Consequences of Stroke Measured by the Stroke Impact Scale. Stroke, 33 (7), 1840–1844. doi: http://doi.org/10.1161/01.str.0000019289.15440.f2
  11. Gusev, E., Skvortsova, E., Martynov, M. (2003). Cerebral stroke: problems and solutions. Annals of RAMS, 11, 44–48.
  12. Van Heerden, J., Desmond, P. M., Phal, P. M. (2014). Functional MRI in clinical practice: A pictorial essay. Journal of Medical Imaging and Radiation Oncology, 58 (3), 320–326. doi: http://doi.org/10.1111/1754-9485.12158
  13. Srinivasan, A., Goyal, M., Azri, F. A., Lum, C. (2006). State-of-the-Art Imaging of Acute Stroke. RadioGraphics, 26, 75–95. doi: http://doi.org/10.1148/rg.26si065501
  14. Altamura, C., Reinhard, M., Vry, M.-S., Kaller, C. P., Hamzei, F., Vernieri, F. et. al. (2009). The longitudinal changes of BOLD response and cerebral hemodynamics from acute to subacute stroke. A fMRI and TCD study. BMC Neuroscience, 10 (1), 151. doi: http://doi.org/10.1186/1471-2202-10-151
  15. Jackman, K., Iadecola, C. (2015). Neurovascular Regulation in the Ischemic Brain. Antioxidants & Redox Signaling, 22 (2), 149–160. doi: http://doi.org/10.1089/ars.2013.5669
  16. Schlaug, G., Siewert, B., Benfield, A., Edelman, R. R., Warach, S. (1997). Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurology, 49 (1), 113–119. doi: http://doi.org/10.1212/wnl.49.1.113
  17. Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J.-P., Frith, C. D., Frackowiak, R. S. J. (1994). Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping, 2 (4), 189–210. doi: http://doi.org/10.1002/hbm.460020402
  18. Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453 (7197), 869–878. doi: http://doi.org/10.1038/nature06976
  19. Van Gelderen, P., Ramsey, N. F., Liu, G., Duyn, J. H., Frank, J. A., Weinberger, D. R., Moonen, C. T. (1995). Three-dimensional functional magnetic resonance imaging of human brain on a clinical 1.5-T scanner. Proceedings of the National Academy of Sciences, 92 (15), 6906–6910. doi: http://doi.org/10.1073/pnas.92.15.6906
  20. Zarahn, E., Alon, L., Ryan, S. L., Lazar, R. M., Vry, M.-S., Weiller, C. et. al. (2011). Prediction of Motor Recovery Using Initial Impairment and fMRI 48 h Poststroke. Cerebral Cortex, 21 (12), 2712–2721. doi: http://doi.org/10.1093/cercor/bhr047
  21. Jueptner, M., Weiller, C. (1995). Review: Does Measurement of Regional Cerebral Blood Flow Reflect Synaptic Activity?–Implications for PET and fMRI. NeuroImage, 2 (2), 148–156. doi: http://doi.org/10.1006/nimg.1995.1017
  22. Moonen, C. T. W., Bandettini, P. A. (2000). Functional MRI. Medical radiology. New York: Springer, 575. doi: http://doi.org/10.1007/978-3-642-58716-0
  23. Sibson, N. R., Dhankhar, A., Mason, G. F., Rothman, D. L., Behar, K. L., Shulman, R. G. (1998). Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proceedings of the National Academy of Sciences, 95 (1), 316–321. doi: http://doi.org/10.1073/pnas.95.1.316
  24. Rijntjes, M., Dettmers, C., Buchel, C., Kiebel, S., Frackowiak, R. S. J., Weiller, C. (1999). A Blueprint for Movement: Functional and Anatomical Representations in the Human Motor System. The Journal of Neuroscience, 19 (18), 8043–8048. doi: http://doi.org/10.1523/jneurosci.19-18-08043.1999
  25. Mintzopoulos, D., Khanicheh, A., Konstas, A. A., Astrakas, L. G., Singhal, A. B., Moskowitz, M. A. et. al. (2008). Functional MRI of Rehabilitation in Chronic Stroke Patients Using Novel MR-Compatible Hand Robots. The Open Neuroimaging Journal, 2 (1), 94–101. doi: http://doi.org/10.2174/1874440000802010094
  26. Nechypurenko, N., Pashkovskaya, I., Musiyenko, Yu. (2008). Main pathophysiological mechanisms of the brain ischemia. Medical news, 1, 7–13.

Published

2018-06-05

How to Cite

Omelchenko, O., & Makarchuk, M. (2018). Brain cortex activation during the execution of the motor task in subjects with acute cerebrovascular accident. ScienceRise: Biological Science, (3 (12), 4–11. https://doi.org/10.15587/2519-8025.2018.132992

Issue

Section

Biological Sciences