Гліколіпіди фотосинтетичних мембран різних сортів пшениці Triticum aestivum за дії біотичного стресору

Автор(и)

  • Світлана Вячеславівна Фомаїді ННЦ «Інститут біології та медицини» Київський національний університет імені Тараса Шевченка вул. Володимирська, 64/13, м. Київ, Україна, 01033, Україна
  • Вікторія Назарівна Белава ННЦ «Інститут біології та медицини» Київський національний університет імені Тараса Шевченка вул. Володимирська, 64/13, м. Київ, Україна, 01033, Україна
  • Ольга Олександрівна Панюта ННЦ «Інститут біології та медицини» Київський національний університет імені Тараса Шевченка вул. Володимирська, 64/13, м. Київ, Україна, 01033, Україна
  • Наталія Юріївна Таран ННЦ «Інститут біології та медицини» Київський національний університет імені Тараса Шевченка вул. Володимирська, 64/13, м. Київ, Україна, 01033, Україна

DOI:

https://doi.org/10.15587/2519-8025.2016.83552

Ключові слова:

моногалактозилдіацилгліцерол, дигалактозилдіацилгліцерол, сульфохіновозилдіацилгліцерол, пшениця, суспензія конідій, церкоспорельоз, біотичний стресор

Анотація

Досліджували вміст гліколіпідів фотосинтетичних мембран у проростків пшениці за інфікування збудником церкоспорельозу. Ліпіди розділяли методом тонкошарової хроматографії. Встановили, що для стійкого сорту пшениці характерно поступове зниження вмісту ліпідів; в проростках сприйнятливого сорту за патогенезу динаміка вмісту гліколіпідів відрізнялась. Такі відмінності складу досліджуваних ліпідів пов'язано зі стійкістю сорту за патогенезу

Біографії авторів

Світлана Вячеславівна Фомаїді, ННЦ «Інститут біології та медицини» Київський національний університет імені Тараса Шевченка вул. Володимирська, 64/13, м. Київ, Україна, 01033

Аспірант

Кафедра фізіології та екології рослин

Вікторія Назарівна Белава, ННЦ «Інститут біології та медицини» Київський національний університет імені Тараса Шевченка вул. Володимирська, 64/13, м. Київ, Україна, 01033

Кандидат біологічних наук, доцент

Кафедра фізіології та екології рослин

Ольга Олександрівна Панюта, ННЦ «Інститут біології та медицини» Київський національний університет імені Тараса Шевченка вул. Володимирська, 64/13, м. Київ, Україна, 01033

Кандидат біологічних наук, доцент

Кафедра фізіології та екології рослин

Наталія Юріївна Таран, ННЦ «Інститут біології та медицини» Київський національний університет імені Тараса Шевченка вул. Володимирська, 64/13, м. Київ, Україна, 01033

Доктор біологічнихнаук, професор

Кафедра фізіології та екології рослин

Посилання

  1. Belava, V. N., Zeleniy, S. B., Panyuta, O. O., Taran, N. Y., Pogribniy, P. V. (2010). Expression of lectin and defensin genes in Mironovskaya 808 and Roazon wheat cultivars infected with Pseudocercosporella herpotrichoides. Biopolymers and Cell, 26 (1), 45–50. doi: 10.7124/bc.000143
  2. Belava, V., Panyuta ,O., Taran, N. (2008). Model system of infection and level of winter wheat (Triticumaestivum L.) resistance estimation to eyespot agent (Pseudocercosporella herpotrichoides (Fron) Deighton). Karantyni Zakhyst Roslyn, 7, 25–28.
  3. Svetlova, N. B., Kalinichenko, O. V, Serga, O. I. (2011). Components of lipid-pigment complex of winter wheat leaves wich was inoculated by fosfomobilisation microorganisms. Silskogospodarska nauka – Agricultural Microbiology, 14, 109–120.
  4. Taran, N. (2006). Plants lipids. Kyiv: Lenvit, 104.
  5. Ahmad, P., John, R., Sarwat, M., Umar, S. (2012). Responses of proline, lipid peroxidation and antioxidative enzymes in two varieties of Pisumsativum L. under salt stress. International Journal of Plant Production, 2 (4), 353–366.
  6. Andreou, A., Brodhun, F., Feussner, I. (2009). Biosynthesis of oxylipins in non-mammals. Progress in Lipid Research, 48, 148–170. doi: 10.1016/j.plipres.2009.02.002
  7. Boudière, L., Michaud, M., Petroutsos, D., Rébeillé, F., Falconet, D., Bastien, O., Block, M. A. (2014). Glycerolipids in photosynthesis: composition, synthesis and trafficking. Biochimicaet Biophysica Acta (BBA)–Bioenergetics, 1837 (4), 470–480. doi: 10.1016/j.bbabio.2013.09.007
  8. Demidchik, V. (2015). Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environmental and Experimental Botany, 109, 212–228. doi: 10.1016/j.envexpbot.2014.06.021
  9. Dhondt, S., Geoffroy, P., Stelmach, B. A., Legrand, M., Heitz, T. (2000). Soluble phospholipase A2 activity is induced before oxylipin accumulation in tobacco mosaic virus‐infected tobacco leaves and is contributed by patatin‐like enzymes. The Plant Journal, 23 (4), 431–440. doi: 10.1046/j.1365-313x.2000.00802.x
  10. Endo, H., Imahori, Y. (2014). Changes in hydrogen peroxide and superoxide anion contents and superoxide dismutase activity during the maturation of sweet pepper (Capsicum annuum L.) fruit. In XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014), 1120, 399–404.
  11. Gao, Q. M., Yu, K., Xia, Y., Shine, M. B., Wang, C., Navarre, D., Kachroo, P. (2014). Mono–and digalactosyldiacylglycerol lipids function nonredundantly to regulate systemic acquired resistance in plants. Cell reports, 9 (5), 1681–1691. doi: 10.1016/j.celrep.2014.10.069
  12. Kalisch, B., Dörmann, P. (2016). Hölzl, G. DGDG and Glycolipids in Plants and Algae. Subcellular Biochemistry, 51–83. doi: 10.1007/978-3-319-25979-6_3
  13. Mir, R., Hernández, M. L., Abou-Mansour, E., Martínez-Rivas, J. M., Mauch, F., Métraux, J. P., León, J. (2013). Pathogen and Circadian Controlled 1 (PCC1) regulates polar lipid content, ABA-related responses, and pathogen defence in Arabidopsis thaliana. Journal of experimental botany, 64 (11), 3385–3395. doi: 10.1093/jxb/ert177
  14. Rasool, S., Ahmad, A., Siddiqi, T. O., Ahmad, P. (2013). Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta physiologiae plantarum, 35 (4), 1039–1050. doi: 10.1007/s11738-012-1142-4
  15. Rivas, S., Heitz, T. (2014). Phospholipase A in Plant Immunity. Signaling and Communication in Plants, 183–205. doi: 10.1007/978-3-642-42011-5_10
  16. Rojas, C. M., Senthil-Kumar, M., Tzin V., Mysore K. S. (2014). Regulation of primary plant metabolism during plant–pathogen interactions and its contribution to plant defense. Frontiers in Plant Science, 5, 17. doi: 10.3389/fpls.2014.00017
  17. Siebers, M., Brands, M., Wewer, V., Duan, Y., Hölzl, G., Dörmann, P. (2016). Lipids in plant–microbe interactions. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1861 (9), 1379–1395. doi: 10.1016/j.bbalip.2016.02.021
  18. Suzuki, N., Koussevitzky, S., Mittler, R. O. N., Miller, G. A. D. (2012). ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell & Environment, 35 (2), 259–270. doi: 10.1111/j.1365-3040.2011.02336.x
  19. Upchurch, R. G. (2008). Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnology letters, 30 (6), 967–977. doi: 10.1007/s10529-008-9639-z
  20. Vu, H. S., Tamura, P., Galeva, N. A., Chaturvedi, R., Roth, M. R., Williams, T. D., Welti, R. (2012). Direct infusion mass spectrometry of oxylipin-containing Arabidopsis membrane lipids reveals varied patterns in different stress responses. Plant physiology, 158 (1), 324–339. doi: 10.1104/pp.111.190280
  21. Walley, J. W., Kliebenstein, D. J., Bostock, R. M., Dehesh, K. (2013). Fatty acids and early detection of pathogens. Current opinion in plant biology, 16 (4), 520–526. doi: 10.1016/j.pbi.2013.06.011
  22. Zoeller, M., Stingl, N., Krischke, M., Fekete, A., Waller, F., Berger, S., Mueller, M. J. (2012). Lipid profiling of the Arabidopsis hypersensitive response reveals specific lipid peroxidation and fragmentation processes: biogenesis of pimelic and azelaic acid. Plant Physiology, 160 (1), 365–378. doi: 10.1104/pp.112.202846

##submission.downloads##

Опубліковано

2016-11-18

Як цитувати

Фомаїді, С. В., Белава, В. Н., Панюта, О. О., & Таран, Н. Ю. (2016). Гліколіпіди фотосинтетичних мембран різних сортів пшениці Triticum aestivum за дії біотичного стресору. ScienceRise: Biological Science, (3 (3), 32–36. https://doi.org/10.15587/2519-8025.2016.83552

Номер

Розділ

Біологічні науки