Redox-dependent mechanisms of brain neuroprotection of rats with experimental diabetes mellitus
DOI:
https://doi.org/10.15587/2519-4852.2018.145725Keywords:
diabetes mellitus, brain, oxidative stress, N-acetylcysteine, melatonin, mitochondria, superoxideAbstract
The aim. To investigate the efficacy regulation of redox-dependent mechanisms neuroprotection in case of various pharmacological schemes including N-acetylcysteine (NAC) and melatonin (Mel) in the brain of rats with experimental type 1 diabetes mellitus (DM 1).
Methods. NAC (1.5g/kg), Mel (10 mg/kg) or their combination (NAC+Mel) where administrated to rats with induced DM 1 for 5 weeks. State of the mitochondria electron transport chain (ETC),velocity of generation superoxide radicals (SR), activity of nNOS, concentration of lactoferrin, “free iron”, methemoglobin, 8-oxoG in the cells of rats` brain were determined by electron paramagnetic resonance (EPR) method using a computerized spectrometer PE-1307 at the temperature of liquid nitrogen (T=77K).
Results. During 7-week after induced DM 1, the rate of superoxide radicals (SR) generation by brains` mitochondria of rats with DM 1 was significantly higher and the activity of neuronal nitric oxide synthase (nNOS) was decreased compare to control group. The reduction in the activity of mitochondrial ETC Complex I and the growth of level 8-oxoG, concentration of "free iron" complexes, NO-FeS proteins, lactoferrin and MetHb concentration in the brain tissue of animals with DM1 were determined. Administration of all investigated pharmacological groups caused decreasing the rate of SR generation and recovering activity of nNOS by brains` mitochondria. After pharmacological intervention with NAC/Mel or NAC+Mel the levels of 8-oxoG and NO-FeS proteins were significantly decreased, activity of «free iron» complexes were normalizedinthe tissue of rats` brain with DM 1. Therapy of NAC also caused reduction level of MetHb and a combination therapy of NAC + Mel caused reduction level of lactoferrin of the rats` brain with DM 1.
Conclusion. At induction of type 1 diabetes, mitochondrial ETC was damaged by products of incomplete catalysis of glucose, which manifested by a decrease in the synthesis of ATP, an increase in the level of SR, which are generated as a result of defection of the electron transport mechanism.
The therapy of NAC and Mel or their combination was accompanied by the protection of the rats` brain cells with DM 1 from the toxic effect of SR, preventing disturbance of mitochondrial function that indicate neuroprotective action. NAC and Mel are perspective drugs for the prevention and treatment of diabetic neuropathy
References
- World Health Organization. Global Report on Diabetes (2016). World Health Organization. Available at: http://apps.who.int/iris/bitstream/handle/10665/204871/9789241565257_eng.pdf?sequence=1
- Tkachenko, V. I., Vydyborets, N. V., Kovalenko, O. F. (2014). Analiz poshyrenosti ta zakhvoriuvanosti na tsukrovyi diabet i yoho uskladnennia sered naselennia Ukrainy ta u Kyivskii oblasti za 2004–2013 rr. Zdobutky klinichnoi i eksperymentalnoi medytsyny, 2, 177–182.
- Popruha, A. A., Bobyreva, L. E., Samarchenko, L. A., Mykhaylychenko, T. E. (2017). Mathematical model of diabetic encephalopathy. Wiad Lek, 70 (5), 906–909. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29203738
- Thakur, P., Kumar, A., Kumar, A. (2018). Targeting oxidative stress through antioxidants in diabetes mellitus. Journal of Drug Targeting, 26 (9), 766–776. doi: http://doi.org/10.1080/1061186x.2017.1419478
- Johar, D. R., Bernstein, L. H. (2017). Biomarkers of stress-mediated metabolic deregulation in diabetes mellitus. Diabetes Research and Clinical Practice, 126, 222–229. doi: http://doi.org/10.1016/j.diabres.2017.02.023
- Vieira, L., Soares, R., Felipe, S., Moura, F., Brito, G., Pacheco, C., Soares, P. (2017). Physiological Targets for the Treatment of Diabetic Encephalopathy. Central Nervous System Agents in Medicinal Chemistry, 17 (1), 78–86. doi: http://doi.org/10.2174/1871524916666160428111015
- Sytnyk, I., Burlaka, A., Vovk, A., Khaitovych, M. (2017). Study of superoxide- and NO-dependent protective mechanisms of N-acetylcysteine and losartan in ratʼs aorta and liver under streptozoticin-induced type 1 diabetes mellitus. ScienceRise: Pharmaceutical Science, 6 (10), 25–31. doi: http://doi.org/10.15587/2519-4852.2017.119490
- Zychowska, M., Rojewska, E., Przewlocka, B., Mika, J. (2013). Mechanisms and pharmacology of diabetic neuropathy – experimental and clinical studies. Pharmacological Reports, 65 (6), 1601–1610. doi: http://doi.org/10.1016/s1734-1140(13)71521-4
- Yerra, V. G., Gundu, C., Bachewal, P., Kumar, A. (2016). Autophagy: The missing link in diabetic neuropathy? Medical Hypotheses, 86, 120–128. doi: http://doi.org/10.1016/j.mehy.2015.11.004
- Wen, X., Wu, J., Wang, F., Liu, B., Huang, C., Wei, Y. (2013). Deconvoluting the role of reactive oxygen species and autophagy in human diseases. Free Radical Biology and Medicine, 65, 402–410. doi: http://doi.org/10.1016/j.freeradbiomed.2013.07.013
- Muriach, M., Flores-Bellver, M., Romero, F. J., Barcia, J. M. (2014). Diabetes and the Brain: Oxidative Stress, Inflammation, and Autophagy. Oxidative Medicine and Cellular Longevity, 2014, 1–9. doi: http://doi.org/10.1155/2014/102158
- Chekman, I. S., Bielenicheva, I. F., Nahorna, O. O. et. al. (2016). Doklinichne vyvchennia spetsyfichnoi aktyvnosti potentsiinykh likarskykh zasobiv pervynnoi ta vtorynnoi neiroprotektsii. Kyiv, 92.
- Wu, W., Liu, B., Xie, C., Xia, X., Zhang, Y. (2018). Neuroprotective effects of N-acetyl cysteine on primary hippocampus neurons against hydrogen peroxide-induced injury are mediated via inhibition of mitogen-activated protein kinases signal transduction and antioxidative action. Molecular Medicine Reports, 17 (5), 6647–6654. doi: http://doi.org/10.3892/mmr.2018.8699
- Wang, B., Yee Aw, T., Stokes, K. Y. (2018). N-acetylcysteine attenuates systemic platelet activation and cerebral vessel thrombosis in diabetes. Redox Biology, 14, 218–228. doi: http://doi.org/10.1016/j.redox.2017.09.005
- Rafieian-Kopaei, M., Sharafati-Chaleshtori, R., Shirzad, H., Soltani, A. (2017). Melatonin and human mitochondrial diseases. Journal of Research in Medical Sciences, 22 (1), 2. doi: http://doi.org/10.4103/1735-1995.199092
- Council Directive 2010/63/EU of 22 September 2010 on the protection of animals used for scientific purposes (2010). Official Journal of the European Communities, L 276, 33–79.
- Stefanov, O. V. (Ed.) (2001). Doklinichni doslidzhennia likarskykh zasobiv. Kyiv: Avitsena, 528 p.
- Kamboj, S. S., Vasishta, R. K., Sandhir, R. (2010). N-acetylcysteine inhibits hyperglycemia-induced oxidative stress and apoptosis markers in diabetic neuropathy. Journal of Neurochemistry, 112 (1), 77–91. doi: http://doi.org/10.1111/j.1471-4159.2009.06435.x
- Negi, G., Kumar, A., Sharma, S. S. (2010). Melatonin modulates neuroinflammation and oxidative stress in experimental diabetic neuropathy: effects on NF-κB and Nrf2 cascades. Journal of Pineal Research, 50 (2), 124–131. doi: http://doi.org/10.1111/j.1600-079x.2010.00821.x
- Burlaka, A. P., Gafurov, M. R., Iskhakova, K. B., Lukin, S. M., Rodionov, A. A., Sidorik, E. P., Vovk, A. V. (2016). Electron Paramagnetic Resonance in the Experimental Oncology: Implementation Examples of the Conventional Approaches. BioNanoScience, 6 (4), 431–436. doi: http://doi.org/10.1007/s12668-016-0238-5
- Burlaka, A. P., Ganusevich, I. I., Golotiuk, V. V. et. al. (2016). Superoxide and NO-dependent mechanisms of antitumor and antimetastatic effect of L-arginine hydrochloride and coenzyme Q10. Experimental oncology, 38, 31–35.
- Burlaka, A. P., Sydoryk, Ye. P. (2006). Radykalni formy kysniu ta oksydu azotu pry pukhlynnomu protsesi. Kyiv: Naukova dumka, 227.
- Dehdashtian, E., Mehrzadi, S., Yousefi, B., Hosseinzadeh, A., Reiter, R. J., Safa, M. et. al. (2018). Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sciences, 193, 20–33. doi: http://doi.org/10.1016/j.lfs.2017.12.001
- Rose, J., Brian, C., Woods, J., Pappa, A., Panayiotidis, M. I., Powers, R., Franco, R. (2017). Mitochondrial dysfunction in glial cells: Implications for neuronal homeostasis and survival. Toxicology, 391, 109–115. doi: http://doi.org/10.1016/j.tox.2017.06.011
- M. Santos, J., Mohammad, G., Zhong, Q., A. Kowluru, R. (2011). Diabetic Retinopathy, Superoxide Damage and Antioxidants. Current Pharmaceutical Biotechnology, 12 (3), 352–361. doi: http://doi.org/10.2174/138920111794480507
- Rafieian-Kopaei, M., Sharafati-Chaleshtori, R., Shirzad, H., Soltani, A. (2017). Melatonin and human mitochondrial diseases. Journal of Research in Medical Sciences, 22 (1), 2. doi: http://doi.org/10.4103/1735-1995.199092
- Agil, A., El-Hammadi, M., Jiménez-Aranda, A., Tassi, M., Abdo, W., Fernández-Vázquez, G., Reiter, R. J. (2015). Melatonin reduces hepatic mitochondrial dysfunction in diabetic obese rats. Journal of Pineal Research, 59 (1), 70–79. doi: http://doi.org/10.1111/jpi.12241
- Jimenéz-Aranda, A., Fernández-Vázquez, G., Mohammad A-Serrano, M., Reiter, R. J., Agil, A. (2014). Melatonin improves mitochondrial function in inguinal white adipose tissue of Zücker diabetic fatty rats. Journal of Pineal Research, 57 (1), 103–109. doi: http://doi.org/10.1111/jpi.12147
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Olena Temirova, Mykola Khaitovych, Anatoliy Burlaka, Anastasia Vovk
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.