Nanobiotechnological obtaining of liposomal forms of antioxidant preparations based on bioflavonoids

Authors

  • Daria Pylypenko National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-4727-0476
  • Vitaliy Prokhorov NanoMedTech LLC Antonovycha str., 68, Kyiv, Ukraine, 03680, Ukraine
  • Olexander Dudnichenko Kharkiv Medical Academy of Postgraduate Education Amosova str. 58, Kharkiv, Ukraine, 61176, Ukraine https://orcid.org/0000-0003-1933-8522
  • Yuriy Krasnopolsky National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0003-3469-5827

DOI:

https://doi.org/10.15587/2519-4852.2019.188679

Keywords:

hydrophobic antioxidants, bioflavonoids, curcumin, quercetin, nanobiotechnology, liposomes, method for obtaining liposomes

Abstract

Most pathological conditions are accompanied by lipid peroxidation and accumulation of oxidative stress products. The antioxidant action of natural hydrophobic compounds, such as quercetin, ubiquinone, curcumin, vitamin E, etc. is established. It is also known that these biologically active compounds act on different parts of antioxidant system. However, their use in parenteral drugs is difficult taking into account their hydrophobicity. Nanoparticles, such as liposomes, are used to increase the bioavailability of lipophilic antioxidants and to create water-soluble form of them.

The aim of the work is to develop the liposomal preparation with co-encapsulation of two hydrophobic antioxidants, namely curcumin and quercetin.

Methods. Technological methods of obtaining liposomes and analytical physicochemical, chromatographic (HPLC, TLC, GLC), methods of determination of particle size, pH were used.

Results. As a result of the study, the formulation and technology of obtaining the liposomal form of curcumin and its composition with quercetin were proposed. The effect of fatty acid composition of lipids, the ratio “lipid: active substance" and the technological conditions on the liposomes formation and the level of encapsulation of active pharmaceutical ingredients were studied. The dependence of nanoparticle sizes on the pressure value and the number of homogenization cycles was investigated. The lyophilized product with a level of encapsulation of hydrophobic antioxidants at least 85 % was obtained. The physicochemical properties of the samples were observed.

Conclusions. The technological scheme for obtaining of сomplex preparation containing curcumin and quercetin, involving the obtaining of lipid film, hydration of components, high-pressure homogenization, sterile filtration and lyophilization is proposed

Author Biographies

Daria Pylypenko, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Postgraduate Student

Department of Biotechnology, Biophysics and Analytical Chemistry

Vitaliy Prokhorov, NanoMedTech LLC Antonovycha str., 68, Kyiv, Ukraine, 03680

Main Technologist

Olexander Dudnichenko, Kharkiv Medical Academy of Postgraduate Education Amosova str. 58, Kharkiv, Ukraine, 61176

MD, Professor, Head of Department

Department of Oncology and Pediatric Oncology

Yuriy Krasnopolsky, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Pharmaceutical Sciences, Professor

Department of Biotechnology, Biophysics and Analytical Chemistry

References

  1. Panche, A. N., Diwan, A. D., Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5. doi: http://doi.org/10.1017/jns.2016.41
  2. Togni, Di Pierro, F., Rapacioli, G., Di Maio, E. A., Appendino, G., Franceschi, F. (2013). Comparative evaluation of the pain-relieving properties of a lecithinized formulation of curcumin (Meriva®), nimesulide, and acetaminophen. Journal of Pain Research, 6, 201–205. doi: http://doi.org/10.2147/jpr.s42184
  3. Huang, M., Su, E., Zheng, F., Tan, C. (2017). Encapsulation of flavonoids in liposomal delivery systems: the case of quercetin, kaempferol and luteolin. Food & Function, 8 (9), 3198–3208. doi: http://doi.org/10.1039/c7fo00508c
  4. Gang, W., Jie, W. J., Ping, Z. L., Ming, D. S., Ying, L. J., Lei, W., Fang, Y. (2012). Liposomal quercetin: evaluating drug deliveryin vitroand biodistributionin vivo. Expert Opinion on Drug Delivery, 9 (6), 599–613. doi: http://doi.org/10.1517/17425247.2012.679926
  5. Ng, Z. Y., Wong, J.-Y., Panneerselvam, J., Madheswaran, T., Kumar, P., Pillay, V. et. al. (2018). Assessing the potential of liposomes loaded with curcumin as a therapeutic intervention in asthma. Colloids and Surfaces B: Biointerfaces, 172, 51–59. doi: http://doi.org/10.1016/j.colsurfb.2018.08.027
  6. Miheytseva, I. N., Pasechnikova, N. V. (2015). Flavonoidyi v oftalmologii – novaya strategiya farmakologicheskogo vozdeystviya. Journal of the National Academy of Medical Sciences of Ukraine, 21 (1), 45–53.
  7. Aqarwal, R., Lezhitsa, L., Aqarwal, P., Addue-Nasir, N. A., Razali, N., Alyautdin, R., Ismail, N. M. (2016). Liposomes in topical ophthalmic drug delivery: an update. Drug delivery, 23 (4), 1075–1091. doi: http://doi.org/10.3109/10717544.2014.943336
  8. Shakhmaiev, A. E., Gorbach, T. V., Bobritskaya, L. A., Krasnopolsky, Yu. M. (2015). Preparation and cardioprotective effect analysis of liposomal coenzyme Q10. The Pharma Innovation Journal, 4 (9), 22–26.
  9. Krasnopolskii, Y. M., Grigor’eva, A. S., Katsai, A. G., Konakhovich, N. F., Prokhorov, V. V., Stadnichenko, A. V. et. al. (2017). Technologies and Perspectives of Liposomal Drug Application in Clinical Practice. Nanotechnologies in Russia, 12 (7-8), 461–470. doi: http://doi.org/10.1134/s1995078017040139
  10. Shvets, V. I., Krasnopolsky, Yu. M., Sorokoumova, G. M. (2016) Liposomalnyie formyi lekarstvennyih preparatov: tehnologicheskie osobennosti polucheniya i primenenie v klinike. Moscow: Remedium, 200.
  11. Pescosolido, N., Giannotti, R., Plateroti, A., Pascarella, A., Nebbioso, M. (2013). Curcumin: Therapeutical Potential in Ophthalmology. Planta Medica, 80 (4), 249–254. doi: http://doi.org/10.1055/s-0033-1351074
  12. Feng, T., Wei, Y., Lee, R., Zhao, L. (2017). Liposomal curcumin and its application in cancer. International Journal of Nanomedicine, 12, 6027–6044. doi: http://doi.org/10.2147/ijn.s132434
  13. Alisi, I. O., Uzairu, A., Abechi, S. E., Idris, S. O. (2018). Evaluation of the antioxidant properties of curcumin derivatives by genetic function algorithm. Journal of Advanced Research, 12, 47–54. doi: http://doi.org/10.1016/j.jare.2018.03.003
  14. Alrawaiq, N. S., Abdullah, A. (2014). A review of antioxidant polyphenol curcumin and its role in detoxification. International Journal of PharmTech Research, 6 (1), 280–289.
  15. Chen, W., Zou, M., Ma, X., Lu, R., Ding, T. (2019). Co-Encapsulation of EGCG and Quercetin in liposomales for Antioxidant Activity. Food Science, 84 (1), 111–120. doi: http://doi.org/10.1111/1750-3841.14405
  16. Chaves, M. A., Oseliero Filho, P. L., Jange, C. G., Sinigaglia-Coimbra, R., Oliveira, C. L. P., Pinho, S. C. (2018). Structural characterization of multilamellar liposomes coencapsulating curcumin and vitamin D3. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 549, 112–121. doi: http://doi.org/10.1016/j.colsurfa.2018.04.018
  17. Pylypenko, D. M., Gorbach, T. V., Katsai, O. G., Grigoryeva, A. S., Krasnopolsky, Yu. M. (2019). A study of oxidative stress markers when using the liposomal antioxidant complex. Pharmakeftiki, 31 (1), 40–47.
  18. Pylypenko, D., Krasnopolsky, Y. (2019). Extraction and purification of curcuminoids from Curcuma longa L. rhizome. Ukrainian Biopharmaceutical Journal, 4 (61), 60–64. doi: http://doi.org/10.24959/ubphj.19.238
  19. Grigor’eva, A. S., Krasnopolsky, Yu. M., Konakhovich, N. F., Pasechnikova, N. V. (2016) Pat. No. 111762 UA. Sposib otrymannia farmakolohichno aktyvnoho liposomalnoho zasobu, shcho mistyt kvertsetyn. MPK: A61K 47/44, A61K 31/353, A61P 27/02, A61K 9/127, A61P 9/10, A61P 39/06. No. a 201407695; declareted: 08.07.14; published: 10.06.2016, Bul. No. 11.
  20. Melnyk, M. I., Dryn, D. O., Al Kury, L. T., Zholos, A. V., Soloviev, A. I. (2018). Liposomal quercetin potentiates maxi-K channel openings in smooth muscles and restores its activity after oxidative stress. Journal of Liposome Research, 29 (1), 94–101. doi: http://doi.org/10.1080/08982104.2018.1458864
  21. García Esteban, E., Cózar-Bernal, M. J., Rabasco Álvarez, A. M., González-Rodríguez, M. L. (2018). A comparative study of stabilising effect and antioxidant activity of different antioxidants on levodopa-loaded liposomes. Journal of Microencapsulation, 35 (4), 357–371. doi: http://doi.org/10.1080/02652048.2018.1487473

Downloads

Published

2019-12-30

How to Cite

Pylypenko, D., Prokhorov, V., Dudnichenko, O., & Krasnopolsky, Y. (2019). Nanobiotechnological obtaining of liposomal forms of antioxidant preparations based on bioflavonoids. ScienceRise: Pharmaceutical Science, (6 (22), 11–15. https://doi.org/10.15587/2519-4852.2019.188679

Issue

Section

Pharmaceutical Science