Study of Epilobium angustifolium L. amino acids content by HPLC method
DOI:
https://doi.org/10.15587/2519-4852.2021.249836Keywords:
Epilobium angustifolium L., herb, free amino acids, bound amino acids, HPLCAbstract
The use of plant raw materials is one of the areas of modern pharmaceutical science in the production of herbal drugs. The genus Epilobium counts more than 200 species, many species of which are used in traditional medicine. Among the Epilobium species, Epilobium angustifolium is one of the well-known medicinal plants which have been used worldwide in habitual medicine. There is insufficient information in the literature on the biologically active substances of Epilobium angustifolium L. The presence of three major polyphenol groups: phenolic acids, flavonoids, and ellagitannins were identified in E. angustifolium extracts. Traditionally, the infusion of leaves of this plant could be useful for headaches, cold and gastrointestinal disorder. The Epilobium angustifolium L. as an insufficiently studied plant is a promising object of study, including amino acids composition. To assess the relationship between the production of primary metabolites and their possible therapeutic properties, we analyzed the amino acid profile of the plant Epilobium angustifolium used in traditional medicine. The study of compounds generated by plants as a result of defense mechanisms permits an understanding of the molecular mechanism involved in their medicinal properties.
The aim. Thus, the aim of the study was to conduct an HPLC analysis of the amino acids of E. angustifolium to establish the prospects for the use of the raw materials in medical and pharmaceutical practice. The results of the current study will be used in further breeding programs aimed to obtain an industrial form of E. angustifolium suitable for pharmaceutical and food applications.
Materials and methods. The determination of amino acids composition of Epilobium angustifolium was conducted using Agilent 1200 (Agilent Technologies, USA).
Results. The HPLC method identified sixteen free amino acids and seventeen bound amino acids in the Epilobium angustifolium herb. The studies have shown that Epilobium angustifolium L. herb is mainly composed of free amino acids such as L-phenylalanine (1.65 µg/mg), L-glutamic acid (1.51 µg/mg), L-arginine (1.24 µg/mg), L-alanine (0.98 µg/mg) and L-aspartic acid (0.57 µg/mg), which were presents in the greatest amount. The dominant bound amino acids in the studied raw material were L-glutamic acid, L-aspartic acid, L-leucine, and L-alanine, the content of which was 32.37 µg/mg, 10.59 µg/mg, 8.70 µg/mg, and 6.22 µg/mg respectively.
Conclusions. Using the HPLC method determined the amino acids in the herb of Epilobium angustifolium L. The concentrations of L-aspartic acid, L-glutamic acid, L-arginine, L-alanine and L-phenylalanine are predominate among free and bound amino acids in the Epilobium angustifolium L. herb. The result shows that Epilobium angustifolium L. is the source of amino acids, so the use of this plant raw material for new remedies is possible in the future
References
- Budniak, L., Slobodianiuk, L., Marchyshyn, S., Klepach, P. (2021). Investigation of the influence of the thick extract of common centaury (Centaurium erythraea RAFN.) herb on the secretory function of the stomach. PharmacologyOnLine, 2, 352–360.
- Huzio, N., Hrytsyk, A., Slobodianiuk, L. (2020). Determination of carbohydrates in Agrimonia eupatoria L. herb. ScienceRise: Pharmaceutical Science, 6 (28), 35–40. doi: http://doi.org/10.15587/2519-4852.2020.221661
- Slobodianiuk, L., Budniak, L., Marchyshyn, S., Demydiak, O. (2021). Investigation of the anti-inflammatory effect of the dry extract from the herb of Stachys sieboldii Miq. PharmacologyOnLine, 2, 590–597.
- Budniak, L., Vasenda, M., Slobodianiuk, L. (2021). Determination of flavonoids and hydroxycinnamic acids in tablets with thick extract of Primula denticulata SMITH. PharmacologyOnLine, 2, 1244–1253.
- Slobodianiuk, L., Budniak, L., Marchyshyn, S., Berdey, I., Slobodianiuk, O. (2021). Study of the hypoglycemic effect of the extract from the tubers of Stachys sieboldii MIQ. PharmacologyOnLine, 2, 167–178.
- Battinelli, L., Tita, B., Evandri, M. G., Mazzanti, G. (2001). Antimicrobial activity of Epilobium spp. extracts. Il Farmaco, 56 (5-7), 345–348. doi: http://doi.org/10.1016/s0014-827x(01)01047-3
- Epilobium species (1998). DR for Herbal Medicines. New Jersey: Medical Economics Company, 828–830.
- Kadam, P., Patil, M., Yadav, K. (2018). A Review on Phytopharmacopial Potential of Epilobium angustifolium. Pharmacognosy Journal, 10 (6), 1076–1078. doi: http://doi.org/10.5530/pj.2018.6.181
- Schepetkin, I. A., Ramstead, A. G., Kirpotina, L. N., Voyich, J. M., Jutila, M. A., Quinn, M. T. (2016). Therapeutic Potential of Polyphenols fromEpilobium Angustifolium(Fireweed). Phytotherapy Research, 30 (8), 1287–1297. doi: http://doi.org/10.1002/ptr.5648
- Granica, S., Piwowarski, J. P., Czerwińska, M. E., Kiss, A. K. (2014). Phytochemistry, pharmacology and traditional uses of different Epilobium species (Onagraceae): A review. Journal of Ethnopharmacology, 156, 316–346. doi: http://doi.org/10.1016/j.jep.2014.08.036
- Kiss, A., Kowalski, J., Melzig, M. F. (2004). Compounds fromEpilobium angustifoliumInhibit the Specific Metallopeptidases ACE, NEP and APN. Planta Medica, 70 (10), 919–923. doi: http://doi.org/10.1055/s-2004-832617
- Monschein, M., Jaindl, K., Buzimkić, S., Bucar, F. (2015). Content of phenolic compounds in wild populations ofEpilobium angustifoliumgrowing at different altitudes. Pharmaceutical Biology, 53 (11), 1576–1582. doi: http://doi.org/10.3109/13880209.2014.993039
- Hunecr, S. (1967). Triterpenes unsaponifiable neutral constituents from Сhamaenerion angustifolium and Epilobium obscurum. Phytochemistry, 6 (8), 1149–1150. doi: http://doi.org/10.1016/s0031-9422(00)86074-4
- Stolarczyk, M., Naruszewicz, M., Kiss, A. K. (2013). Extracts from Epilobium sp. herbs induce apoptosis in human hormone-dependent prostate cancer cells by activating the mitochondrial pathway. Journal of Pharmacy and Pharmacology, 65 (7), 1044–1054. doi: http://doi.org/10.1111/jphp.12063
- Volochai, V., Marksa, M., Jarukas, L., Skibitska, M., Ivanauskas, L., Georgiyants, V., Mykhailenko, O. (2020). The organic and amino acid composition ofherb and rhizomeChamaenerionangustifolium (L.) Scop. Theoretical and practical aspects of the research of medicinal plants. Kharkiv, 28–29.
- Lasinskas, M., Jariene, E., Vaitkeviciene, N., Hallmann, E., Najman, K. (2020). Effect of Different Durations of Solid-Phase Fermentation for Fireweed (Chamerion angustifolium (L.) Holub) Leaves on the Content of Polyphenols and Antioxidant Activity In Vitro. Molecules, 25 (4), 1011. doi: http://doi.org/10.3390/molecules25041011
- Nowak, A., Klimowicz, A., Duchnik, W., Kucharski, Ł., Florkowska, K., Muzykiewicz, A. et. al. (2019). Application of green-extraction technique to evaluate of antioxidative capacity of wild population of fireweed (Epilobium angustifolium). Herba Polonica, 65 (4), 18–30. doi: http://doi.org/10.2478/hepo-2019-0022
- Feshchenko, H., Marchyshyn, S., Budniak, L., Slobodianiuk, L., Basaraba, R. (2021). Study of antibacterial and antifungal properties of the lyophilized extract of fireweed (Chamaenerion angustifolium L.) herb. PharmacologyOnLine, 2, 1464–1472.
- Sõukand, R., Mattalia, G., Kolosova, V., Stryamets, N., Prakofjewa, J., Belichenko, O. et. al. (2020). Inventing a herbal tradition: The complex roots of the current popularity of Epilobium angustifolium in Eastern Europe. Journal of Ethnopharmacology, 247, 112254. doi: http://doi.org/10.1016/j.jep.2019.112254
- Nowak, A., Cybulska, K., Makuch, E., Kucharski, Ł., Różewicka-Czabańska, M., Prowans, P. et. al. (2021). In Vitro Human Skin Penetration, Antioxidant and Antimicrobial Activity of Ethanol-Water Extract of Fireweed (Epilobium angustifolium L.). Molecules, 26 (2), 329. doi: http://doi.org/10.3390/molecules26020329
- Huttunen, S., Riihinen, K., Kauhanen, J., Tikkanen‐Kaukanen, C. (2012). Antimicrobial activity of different Finnish monofloral honeys against human pathogenic bacteria. APMIS, 121 (9), 827–834. doi: http://doi.org/10.1111/apm.12039
- Savych, A., Marchyshyn, S., Harnyk, M., Kudria, V., Ocheretniuk, A. (2021). Determination of amino acids content in two samples of the plant mixtures by GC-MS. Pharmacia, 68 (1), 283–289. doi: http://doi.org/10.3897/pharmacia.68.e63453
- Slobodianiuk, L., Budniak, L., Marchyshyn, S., Kostyshyn, L., Ezhned, M. (2021). Determination of amino acids content of the Tagetes lucida Cav. by GC/MS. Pharmacia, 68 (4), 859–867. doi: http://doi.org/10.3897/pharmacia.68.e73325
- Jámbor, A., Molnár-Perl, I. (2009). Quantitation of amino acids in plasma by high performance liquid chromatography: Simultaneous deproteinization and derivatization with 9-fluorenylmethyloxycarbonyl chloride. Journal of Chromatography A, 1216 (34), 6218–6223. doi: http://doi.org/10.1016/j.chroma.2009.06.083
- Hanczkó, R., Jámbor, A., Perl, A., Molnár-Perl, I. (2007). Advances in the ophthalaldehyde derivatizations: Comeback to the o-phthalaldehydeethanethiol reagent. Journal of Chromatography A, 1163, 25–42. doi: http://doi.org/10.1016/j.chroma.2007.06.013
- Jámbor, A., Molnár-Perl, I. (2009). Amino acid analysis by high-performance liquid chromatography after derivatization with 9-fluorenylmethyloxycarbonyl chloride. Journal of Chromatography A, 1216 (15), 3064–3077. doi: http://doi.org/10.1016/j.chroma.2009.01.068
- Moran-Palacio, E., Tortoledo-Ortiz, O., Yañez-Farias, G., Zamora-Álvarez, L., Stephens-Camacho, N., Soñanez-Organis, J. et. al. (2014). Determination of Amino Acids in Medicinal Plants from Southern Sonora, Mexico. Tropical Journal of Pharmaceutical Research, 13 (4), 601–606. doi: http://doi.org/10.4314/tjpr.v13i4.17
- Wu, G. (2009). Amino acids: metabolism, functions, and nutrition. Amino Acids, 37 (1), 1–17. doi: http://doi.org/10.1007/s00726-009-0269-0
- Dioguardi, F. S. (2011). Clinical use of amino acids as dietary supplement: pros and cons. Journal of Cachexia, Sarcopenia and Muscle, 2 (2), 75–80. doi: http://doi.org/10.1007/s13539-011-0032-8
- Li, P., Yin, Y.-L., Li, D., Woo Kim, S., Wu, G. (2007). Amino acids and immune function. British Journal of Nutrition, 98 (2), 237–252. doi: http://doi.org/10.1017/s000711450769936x
- Bouba, A. A., Ponka, R., Augustin, G., Yanou, N. N., El-Sayed, M. A.-H., Montet, D. et. al. (2016). Amino Acid and Fatty Acid Profile of Twenty Wild Plants Used as Spices in Cameroon. American Journal of Food Science and Technology, 4 (2), 29–37.
- Wang, W. W., Qiao, S. Y., Li, D. F. (2008). Amino acids and gut function. Amino Acids, 37 (1), 105–110. doi: http://doi.org/10.1007/s00726-008-0152-4
- Machado, M., Machado, S., Pimentel, F. B., Freitas, V., Alves, R. C., Oliveira, M. B. P. P. (2020). Amino Acid Profile and Protein Quality Assessment of Macroalgae Produced in an Integrated Multi-Trophic Aquaculture System. Foods, 9 (10), 1382. doi: http://doi.org/10.3390/foods9101382
- Wu, G.; Wu, G. (Ed.) (2013). Amino Acids: Biochemistry and Nutrition. Boca Raton: CRC Press, 503. doi: http://doi.org/10.1201/b14661
- Onuegbu, N. C., Adedokun, I. I., Kabuo, N. O., Nwosu, J. N. (2011). Amino Acid Profile and Micronutrient Composition of the African Pear (Dacryodes edulis) Pulp. Pakistan Journal of Nutrition, 10 (6), 555–557. doi: http://doi.org/10.3923/pjn.2011.555.557
- Fernstrom, J. D., Fernstrom, M. H. (2007). Tyrosine, Phenylalanine, and Catecholamine Synthesis and Function in the Brain. The Journal of Nutrition, 137 (6), 1539S–1547S. doi: http://doi.org/10.1093/jn/137.6.1539s
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Halyna Feshchenko, Oleksandra Oleshchuk, Liudmyla Slobodianiuk, Ivanna Milian
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.