The influence of non-steroidal anti-inflammatory drugs with different mechanisms of action on the course of stress reaction, the functional state of kidneys, liver, and heart on the model of acute general cooling

Authors

DOI:

https://doi.org/10.15587/2519-4852.2022.255797

Keywords:

acute general cooling, sodium diclofenac, etoricoxib, darbufelone mesylate, kidneys, liver, heart, cold stress

Abstract

Inhibitors of the arachidonic acid cascade have significant potential as the agents for the prevention of severe cold injuries. The results of the previous studies have demonstrated the pronounced frigoprotective properties of certain non-steroidal anti-inflammatory drugs, primarily diclofenac sodium, etoricoxib, darbufelone mesylate, under the conditions of acute general cooling.

The aim of the study: to investigate the effect of non-steroidal anti-inflammatory drugs with various mechanisms of action on the course of the stress reaction, the functional state of the kidneys, liver, and heart using the model of acute general cooling.

Materials and Methods: The experiment was carried out using 35 outbreed male rats weighing 256±5 g. The studied drugs were administered intragastrically 30 minutes before cold injury modelling: diclofenac sodium at a dose of 7 mg/kg, etoricoxib at a dose of 5 mg/kg, darbufelone mesylate at a dose of 20 mg/kg. Acute general cooling was induced by exposure at –18 °C for 2 hours. The efficacy of the studied drugs was evaluated by the values as follows: the body temperature (measured rectally), the course of a stress reaction according to the criteria of “the stress triad”, the functional state of the kidney and liver according to the changes in the blood serum biochemical parameters, the functional state of the heart according to the electrocardiogram.

Results: It was found that etoricoxib and darbufelone mesylate, and especially diclofenac sodium, demonstrate frigoprotective properties, reducing the severity of hypothermia, have stress-protective activity and a beneficial effect on the functional state of the kidneys. All investigated non-steroidal anti-inflammatory drugs prevent a decrease in myocardial contractility (by the effect on the systolic index) and lengthening of the QT interval caused by acute cold injury. Diclofenac sodium, unlike etoricoxib and darbufelone mesylate, does not enhance the effect of acute general cooling on intraventricular conduction. Under acute exposure to cold, no significant changes in the functional state of the liver were observed, including the groups receiving the nonsteroidal anti-inflammatory medicines.

Conclusions: The prophylactic administration of the arachidonic acid cascade inhibitors, especially the non-selective COX-2 inhibitor diclofenac sodium, reduces the severity of the stress response, contributes to the maintenance of the renal and cardiac function. There are no significant changes in the functional state of the liver under conditions of the experiment

Author Biographies

Sergiy Shtrygol’, National University of Pharmacy

Doctor of Medical Sciences, Professor

Department of Pharmacology and Pharmacotherapy

Olga Koiro, National University of Pharmacy

PhD, Associate Professor

Department of Pharmacology and Pharmacotherapy

Olesia Kudina, National University of Pharmacy

PhD, Associate Professor

Department of Pharmacology and Pharmacotherapy

Olga Tovchiga, National University of Pharmacy

Doctor of Pharmaceutical Sciences, Associate Professor

Department of Pharmacology and Pharmacotherapy

Tetiana Yudkevych, National University of Pharmacy

Deputy Director for Research

Educational and Scientific Institute of Applied Pharmacy

Denys Oklei, V. N. Karazin Kharkiv National University

Doctor of Medical Sciences, Associate Professor

School of Medicine

References

  1. Biem, J., Koehncke, N., Classen, D., Dosman, J. (2003). Out of the cold: management of hypothermia and frostbite. Canadian Medical Association Journal, 168 (3), 305–311.
  2. QuickStats: Death Rates Attributed to Excessive Cold or Hypothermia Among Persons Aged ≥15 Years, by Urban-Rural Status and Age Group – National Vital Statistics System, United States, 2019 (2021). MMWR Morb Mortal Wkly Rep, 70 (7), 258. doi: http://doi.org/10.15585/mmwr.mm7007a6
  3. Solianik, R., Skurvydas, A., Urboniene, D., Eimantas, N., Daniuseviciute, L., Brazaitis, M. (2015). Similar cold stress induces sex-specific neuroendocrine and working memory responses. Cryo Letters, 36 (2), 120–177.
  4. Kong, X., Liu, H., He, X., Sun, Y., Ge, W. (2020). Unraveling the Mystery of Cold Stress-Induced Myocardial Injury. Frontiers in Physiology, 11. doi: http://doi.org/10.3389/fphys.2020.580811
  5. Datta, A., Tipton, M. (2006). Respiratory responses to cold water immersion: neural pathways, interactions, and clinical consequences awake and asleep. Journal of Applied Physiology, 100 (6), 2057–2064. doi: http://doi.org/10.1152/japplphysiol.01201.2005
  6. Eimonte, M., Paulauskas, H., Daniuseviciute, L., Eimantas, N., Vitkauskiene, A., Dauksaite, G. et. al. (2021). Residual effects of short-term whole-body cold-water immersion on the cytokine profile, white blood cell count, and blood markers of stress. International Journal of Hyperthermia, 38 (1), 696–707. doi: http://doi.org/10.1080/02656736.2021.1915504
  7. Hu, G.-Z., Yang, S.-J., Hu, W.-X., Wen, Z., He, D., Zeng, L.-F. et. al. (2015). Effect of cold stress on immunity in rats. Experimental and Therapeutic Medicine, 11 (1), 33–42. doi: http://doi.org/10.3892/etm.2015.2854
  8. Wang, X., Che, H., Zhang, W., Wang, J., Ke, T., Cao, R. et. al. (2015). Effects of Mild Chronic Intermittent Cold Exposure on Rat Organs. International Journal of Biological Sciences, 11 (10), 1171–1180. doi: http://doi.org/10.7150/ijbs.12161
  9. Yao, R., Yang, Y., Lian, S., Shi, H., Liu, P., Liu, Y. et. al. (2018). Effects of Acute Cold Stress on Liver O-GlcNAcylation and Glycometabolism in Mice. International Journal of Molecular Sciences, 19 (9), 2815. doi: http://doi.org/10.3390/ijms19092815
  10. Sabharwal, R., Johns, E. J., Egginton, S. (2004). The influence of acute hypothermia on renal function of anaesthetized euthermic and acclimatized rats. Experimental Physiology, 89 (4), 455–463. doi: http://doi.org/10.1113/expphysiol.2004.027904
  11. Pääkkönen, T., Leppäluoto, J. (2002). Cold exposure and hormonal secretion: A review. International Journal of Circumpolar Health, 61 (3), 265–276. doi: http://doi.org/10.3402/ijch.v61i3.17474
  12. Shida, A., Ikeda, T., Tani, N., Morioka, F., Aoki, Y., Ikeda, K. et. al. (2020). Cortisol levels after cold exposure are independent of adrenocorticotropic hormone stimulation. PLOS ONE, 15 (2), e0218910. doi: http://doi.org/10.1371/journal.pone.0218910
  13. Broman, M., Källskog, O., Nygren, K., Wolgast, M. (1998). The role of antidiuretic hormone in cold‐induced diuresis in the anaesthetized rat. Acta Physiologica Scandinavica, 162 (4), 475–480. doi: http://doi.org/10.1046/j.1365-201x.1998.0314f.x
  14. Ostojić, J. N., Mladenović, D., Ninković, M., Vučević, D., Bondžić, K., Ješić-Vukićević, R., Radosavljević, T. (2012). The effects of cold-induced stress on liver oxidative injury during binge drinking. Human & Experimental Toxicology, 31 (4), 387–396. doi: http://doi.org/10.1177/0960327111433899
  15. Kapelka, І. G., Bondarev, E. V., Kudіna, O. V., Koiro, O. O., Shchokіna, K. G., Lutcak, І. V. (2021). Frigoprotektori – zasobi dlia profіlaktiki ta lіkuvannia kholodovoi travmi: novі pіdkhodi, dosiagnennia ta perspektivi Topical issues of new medicines development. Kharkіv, 340–342.
  16. Kapelka, I. H., Shtrygol', S. Yu. (2021). Innovatsiini perspektyvy pidvyshchennia efektyvnosti farmakokorektsii hostroi kholodovoi travmy shliakhom zastosuvannia inhibitoriv kaskadu arakhidonovoi kysloty. Informatsiinyi lyst pro novovvedennia v sferi okhorony zdorov’ia. Kyiv, 41-2021, 4.
  17. Kapelka, I. H., Shtrygol', S. Yu. (2021). Pat. No. 124651 UA. Zastosuvannia dyklofenaku natriiu yak zasobu fryhoprotektornoi dii. MPK: A61K 31/196 (2006.01), A61R 17/02 (2006.01). No. a201911937; declareted: 09.12.2019; declareted: 20.10.2021, Bul. No. 42/2021.
  18. Murphy, J. V., Banwell, P. E., Roberts, A. H. N., McGrouther, D. A. (2000). Frostbite: Pathogenesis and Treatment. The Journal of Trauma: Injury, Infection, and Critical Care, 48 (1), 171–178. doi: http://doi.org/10.1097/00005373-200001000-00036
  19. Shtrygol, S. Y., Kapelka, I. G., Mishchenko, M. V., Mishchenko, O. Y. (2021). Non-obvious effects of montelukast – leukotriene receptor blocker: frigoprotective and anticonvulsant properties. Medicni Perspektivi (Medical Perspectives), 26 (2), 19–25. doi: http://doi.org/10.26641/2307-0404.2021.2.234486
  20. Kapelka, І. G., Shtrigol, S. Iu. (2019). The comparative research of frigoprotective properties of nonsteroidal anti-inflammatory drugs оn the model of acute general cooling. Pharmacology and Drug Toxicolog, 13 (5), 338–343.
  21. Kapelka, I., Shtrygol, S., Koiro, O., Merzlikin, S., Kudina, O., Yudkevych, T. (2021). Effect of arachidonic acid cascade inhibitors on body temperature and cognitive functions in rats in the Morris water maze after acute cold injury. Pharmazie, 76 (7), 313–316.
  22. Kapelka, I. H., Shtrygol', S. Yu., Lesyk, R. B., Lozynskyi, A. V., Khom’iak, S. V., Novikov, V. P. (2020). The comparative research of arachidonic acid cascade inhibitors for frigoprotective activity. Pharmacology and Drug Toxicology, 14 (2), 122–128. doi: http://doi.org/10.33250/14.02.122
  23. Gan, T. J. (2010). Diclofenac: an update on its mechanism of action and safety profile. Current Medical Research and Opinion, 26 (7), 1715–1731. doi: http://doi.org/10.1185/03007995.2010.486301
  24. Walker, C. (2018). Are All Oral COX-2 Selective Inhibitors the Same? A Consideration of Celecoxib, Etoricoxib, and Diclofenac. International Journal of Rheumatology, 2018, 1–12. doi: http://doi.org/10.1155/2018/1302835
  25. Khavrona, O. P. (2014). Influence of the dual COX-2/5-LOG inhibitor on the activity of l-arhinin/no system in rat's blood with experimental ulcer of the stomach. Bukovinian Medical Herald, 2 (70), 249–251. doi: http://doi.org/10.24061/2413-0737.xviii.2.70.2014.114
  26. Bondariev, Ye. V., Shtrygol', S. Yu., Drohovoz, S. M., Shchokina, K. H. (2018). Kholodova travma: doklinichne vyvchennia likarskykh preparativ z fryhoprotektornymy vlastyvostiamy. Kharkiv: Natsionalnyi farmatsevychnyi universytet, 35.
  27. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes (2010). Available at: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32010L0063
  28. Koiro, O. O., Shtrygol', S. Yu. (2013). Z Protective effect of Aegopodium podagraria L. and trifolin in hepatic ischemia-reperfusion at rats. Farmakom, 1 (13), 59–65.
  29. Bondariev, Ye. V., Shtrygol', S. Yu. (2017). Effect of glucosamine drugs and acetylsalicylic acid on arterial pressure and elek-trocardiogram markers in experimental cold trauma. Farmakolohiia ta likarska toksykolohiia, 6 (56), 31–36.
  30. Stefanov, O. V. (2001). Doklinichni doslidzhennia likarskykh zasobiv. Kyiv: Avitsena, 528.
  31. Kamyshnikov, V. S. (2009). Spravochnik po kliniko-biokhimicheskim issledovaniiam i laboratornoi diagnostike. Moscow: MEDpressinform, 896.
  32. Dzhanashiia, P. Kh., Shevchenko, N. M., Malenkov, V. K. (2003). Rukovodstvo po interpretatcii EKG (testy po interpretatcii EKG). Moscow: Overlei, 273.
  33. Amar, D., Shamoon, h., Lazar, E. J., Frishman, W. H. (1993). Acute hyperglycaemic effect of anaesthetic induction with thiopentone. Acta Anaesthesiologica Scandinavica, 37 (6), 571–574. doi: http://doi.org/10.1111/j.1399-6576.1993.tb03767.x
  34. Takeuchi, K. (2012). Pathogenesis of NSAID-induced gastric damage: Importance of cyclooxygenase inhibition and gastric hypermotility. World Journal of Gastroenterology, 18 (18), 2147–2160. doi: http://doi.org/10.3748/wjg.v18.i18.2147
  35. Di Luigi, L., Rossi, C., Sgrò, P., Fierro, V., Romanelli, F., Baldari, C., Guidetti, L. (2007). Do Non-Steroidal Anti-Inflammatory Drugs Influence the Steroid Hormone Milieu in Male Athletes? International Journal of Sports Medicine, 28 (10), 809–814. doi: http://doi.org/10.1055/s-2007-964991
  36. Di Luigi, L., Guidetti, L., Romanelli, f., Baldari, C., Conte, D. (2001). Acetylsalicylic acid inhibits the pituitary response to exercise-related stress in humans. Medicine & Science in Sports & Exercise, 33 (12), 2029–2035. doi: http://doi.org/10.1097/00005768-200112000-00009
  37. Lucas, G. N. C., Leitão, A. C. C., Alencar, R. L., Xavier, R. M. F., Daher, E. D. F., Silva Junior, G. B. da. (2019). Pathophysiological aspects of nephropathy caused by non-steroidal anti-inflammatory drugs. Brazilian Journal of Nephrology, 41 (1), 124–130. doi: http://doi.org/10.1590/2175-8239-jbn-2018-0107
  38. Kapelka, I. G., Shtrygol’, S. Y. (2020). The characteristics of the anti-inflammatory action of sodium diclofenac in cold and normal environment. News of Pharmacy, 2 (100), 106–112. doi: http://doi.org/10.24959/nphj.20.37
  39. Lutcenko, M. T., Lutcenko, M. M., Shmatok, M. I. (2013). Povrezhdaiushchee deistvie nizkikh temperatur na miofibrilly kardiomiotcitov. Biulleten fiziologii i patologii dykhaniia, 48, 56–62.

Downloads

Published

2022-04-29

How to Cite

Shtrygol’, S., Koiro, O., Kudina, O., Tovchiga, O., Yudkevych, T., & Oklei, D. (2022). The influence of non-steroidal anti-inflammatory drugs with different mechanisms of action on the course of stress reaction, the functional state of kidneys, liver, and heart on the model of acute general cooling. ScienceRise: Pharmaceutical Science, (2(36), 46–55. https://doi.org/10.15587/2519-4852.2022.255797

Issue

Section

Pharmaceutical Science