Study of the formation of micelles and their structure by the spin probe method

Authors

DOI:

https://doi.org/10.15587/2519-4852.2022.263054

Keywords:

surfactant, poloxamer P338 (P338), solution, micelles, spin probe, EPR spectrum, spectrum parameters, viscosity

Abstract

The aim. To study the surfactant solutions depending on the type and concentration of surfactants as well as their interaction with some excipients by spin probe method.

Materials and methods. Solutions of ionic and nonionic surfactants containing 4 spin probes differing in molecular structure and solubility were studied. Electronic paramagnetic resonance (EPR) spectra were obtained and their type and parameters were determined. The critical micelle concentration (CMC) was determined from the surface tension isotherm, and the rheological parameters were studied by rotational viscometry.

Results. The shape of the EPR spectra and the spectral parameters of the spin probes depended on both the surfactant concentration and the molecular structure and solubility of these spin probes. There was a concentration range in which associations with surfactants formed at surfactant concentrations below the CMC. At surfactant concentrations above the CMC and up to 1 %, the structure of the surfactant micelles did not change. In the micelles, the surfactant modelling probes rotated rapidly about the long axis of the molecule and perpendicular to it, while they were fixed in the radial direction. The rotational diffusion of probes dissolved in water was much faster. The micelle cores formed by nonionic surfactant and P338 were more viscous compared to ionic surfactants. Surfactant micelles were anisotropic in viscosity, and different segments of the alkyl chains of surfactant modelling probes had different dynamic properties. The packing of molecules in the micelles was more ordered and compacted at the level of the fifth carbon atom. The interactions between surfactant and probe and between cationic surfactant and disodium edetate were determined from the parameters of the EPR spectra. The relationship between the changes in the parameters of the EPR spectra with increasing temperature, the P338 content in the solutions, and the sol-gel transition was revealed. Solubilization of lipophilic substances by P338 solutions increased due to the interaction of propylene glycol and P338.

Conclusions. The shape and parameters of the EPR spectra in real solutions and micellar solutions of surfactants were different and also depended on the structure and solubility of spin probes. Surfactant micelles were anisotropic in viscosity, and different segments of the alkyl chains of surfactant modelling probes had different dynamic properties. The packing of molecules in the micelles was more ordered and compacted at the level of the fifth carbon atom. The EPR spectra and/or their parameters changed due to the interaction between surfactant and probe, surfactant and other substances, or sol-gel transitions in P338 solutions

Author Biographies

Elena Bezuglaya, State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine

PhD, Senior Researcher, Head of Laboratory

Laboratory of Technology and Analysis of Medicinal Products

Nikolay Lyapunov, State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine

Doctor of Pharmaceutical Sciences, Professor, Leading Researcher

Laboratory of Technology and Analysis of Medicinal Products

Valentyn Chebanov, State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine

Doctor of Chemical Sciences, Professor, Corresponding Member of NAS of Ukraine, First Deputy General Director, Director of Department

Department of Chemistry of Functional Materials

Oleksii Liapunov, State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine

PhD, Researcher

Laboratory of Technology and Analysis of Medicinal Products

References

  1. The European Pharmacopoeia (2019). European Directorate for the Quality of Medicines & HealthCare of the Council of Europe. Strasbourg, 5224.
  2. Sheskey, P. J., Hancock, B. C., Moss, G. P., Goldfarb, D. J. (Eds.) (2020). Handbook of Pharmaceutical Excipients. London: Pharm. Press, 1296.
  3. Da Silva, J. B., Cook, M. T., Bruschi, M. L. (2020). Thermoresponsive systems composed of poloxamer 407 and HPMC or NaCMC: mechanical, rheological and sol-gel transition analysis. Carbohydrate Polymers, 240, 116268. doi: http://doi.org/10.1016/j.carbpol.2020.116268
  4. Fakhari, A., Corcoran, M., Schwarz A. (2017). Thermogelling properties of purified poloxamer 407. Heliyon, 3 (8). doi: http://doi.org/10.1016/j.heliyon.2017.e00390
  5. Soliman, K. A., Ullah, K., Shah, A., Jones, D. S., Singh, T. R. (2019). Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications. Drug Discovery Today, 24 (8), 1575–1586. doi: http://doi.org/10.1016/j.drudis.2019.05.036
  6. Bodratti, A., Alexandridis, P. (2018). Formulation of poloxamers for drug delivery. Journal of Functional Biomaterials, 9 (11). doi: http://doi.org/10.3390/jfb9010011
  7. Ćirin, D., Krstonošić, V. (2020). Influence of Poloxamer 407 on Surface Properties of Aqueous Solutions of Polysorbate Surfactants. Journal of Surfactants and Detergents, 23 (3), 595–602. doi: http://doi.org/10.1002/jsde.12392
  8. Russo, E., Villa C. (2019). Poloxamer Hydrogels for Biomedical Applications. Pharmaceutics, 11 (12), 671. doi: http://doi.org/10.3390/pharmaceutics11120671
  9. Ci, L., Huang, Z., Liu, Y., Liu, Z., Wei, G., Lu, W. (2017). Amino-functionalized poloxamer 407 with both mucoadhesive and thermosensitive properties: preparation, characterization and application in a vaginal drug delivery system. Acta Pharmaceutica Sinica B, 7 (5), 593–602. doi: http://doi.org/10.1016/j.apsb.2017.03.002
  10. Abdeltawab, H., Svirskis, D., Sharma M. (2020). Formulation strategies to modulate drug release from poloxamer based in situ gelling systems. Expert Opinion on Drug Delivery, 17 (4), 495–509. doi: http://doi.org/10.1080/17425247.2020.1731469
  11. Ivanova, R., Alexandridis, P., Lindman, B. (2001). Interaction of poloxamer block copolymers with cosolvents and surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 183-185, 41–53. doi: http://doi.org/10.1016/s0927-7757(01)00538-6
  12. Ćirin, D., Krstonošić, V., Poša, M. (2017). Properties of poloxamer 407 and polysorbate mixed micelles: Influence of polysorbate hydrophobic chain. Journal of Industrial and Engineering Chemistry, 47, 194–201. doi: http://doi.org/10.1016/j.jiec.2016.11.032
  13. Middleton, J. M., Siefert, R. L., James, M. H., Schrand, A. M., Kolel-Veetil, M. K. (2021). Micelle formation, structures, and metrology of functional metal nanoparticle compositions. AIMS Materials Science, 8 (4), 560–586. doi: http://doi.org/10.3934/matersci.2021035
  14. Pisarcik, M., Devinsky, F., Pupak, F. (2015). Determination of micelle aggregation numbers of alkyltrimethylammonium bromide and sodium dodecyl sulfate surfactants using time-resolved fluorescence quenching. Open Chemistry, 13, 922–931. doi: http://doi.org/10.1515/chem-2015-0103
  15. Rusanov, A. I., Shchekin, A. K. (2016). Mitcelloobrazovanie v rastvorakh poverkhnostno-aktivnykh veshchestv. Saint Petersburg: OOO «Izdatelstvo «Lan», 612.
  16. Berliner, L. (Ed.). (1979). Metod spinovykh metok. Teoriia i primenenie. Moscow: Mir, 635.
  17. Georgieva, E. R. (2017). Nanoscale lipid membrane mimetics in spin-labeling and electron paramagnetic resonance spectroscopy studies of protein structure and function. Nanotechnology Reviews, 6 (1), 75–92. doi: http://doi.org/10.1515/ntrev-2016-0080
  18. Sahu, I. D., Lorigan, G. A. (2021). Probing structural dynamics of membrane proteins using tlectron paramagnetic resonance spectroscopic techniques. Biophysica, 1, 106–125. doi: http://doi.org/10.3390/biophysica1020009
  19. Camargos, H. S., Alonso, A. (2013). Electron paramagnetic resonance (EPR) spectral components of spin-labeled lipids in saturated phospholipid bilayers: effect of cholesterol. Química Nova, 36 (6), 815–821. doi: http://doi.org/10.1590/s0100-40422013000600013
  20. Catte, A., White G. F., Wilson, M. R., Oganesyan, V. S. (2018). Direct prediction of EPR spectra from lipid bilayers: Understanding structure and dynamics in biological membranes. ChemPhysChem, 19 (17), 2183–2193. doi: http://doi.org/10.1002/cphc.201800386
  21. Farafonov, V. S., Lebed, A. V. (2020). Nitroxyl spin probe in ionic micelles: A molecular dynamics study. Kharkiv University Bulletin. Chemical Series, 34 (57), 57–64. doi: http://doi.org/10.26565/2220-637x-2020-34-02
  22. Liapunov, M. O., Ivanov, L. V., Bezuhla, O. P., Zhdanov, R. I., Tsymbal, L. V. (1992). Doslidzhennia ahrehativ poverkhnevo-aktyvnykh rechovyn (PAR) metodom spinovykh zondiv. Farmatsevtychnyi zhurnal, 5-6, 40–45.
  23. Bahri, M. A., Hoebeke, M., Grammenos, A., Delanaye, L., Vandewalle, N., Seret, A. (2006). Investigation of SDS, DTAB and CTAB micelle microviscosities by Electron Spin Resonance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 290 (1-3), 206–212. doi: https://doi.org/10.1016/j.colsurfa.2006.05.021
  24. Lyapunov, A. N., Bezuglaya, E. P., Lyapunov, N. A., Kirilyuk, I. A. (2015). Studies of Carbomer Gels Using Rotational Viscometry and Spin Probes. Pharmaceutical Chemistry Journal, 49 (9), 639–644. doi: http://doi.org/10.1007/s11094-015-1344-3
  25. Likhtenshtein, G. I. (1974). Metod spinovykh zondov v molekuliarnoi biologii. Moscow: Nauka, 256.
  26. Kuznetcov, A. N. (1976). Metod spinovogo zonda (Osnovy i primenenie). Moscow: Nauka, 210.
  27. Liapunov, N. A., Purtov, A. V. (2009). Issledovanie poverkhnostno-aktivnykh i kolloidno-mitcelliarnykh svoistv benzalkoniia khlorida. Farmakom, 4, 54–59.
  28. Bezuglaya, E., Lyapunov, N., Lysokobylka, O., Liapunov, O., Klochkov, V., Grygorova, G., Liapunova, A. (2021). Interaction of surfactants with poloxamers 338 and its effect on some properties of cream base. ScienceRise: Pharmaceutical Science, 6 (34), 4–19. doi: http://doi.org/10.15587/2519-4852.2021.249312

Downloads

Published

2022-08-31

How to Cite

Bezuglaya, E., Lyapunov, N., Chebanov, V., & Liapunov, O. (2022). Study of the formation of micelles and their structure by the spin probe method. ScienceRise: Pharmaceutical Science, (4 (38), 4–18. https://doi.org/10.15587/2519-4852.2022.263054

Issue

Section

Pharmaceutical Science