Peculiarities of the effect of antiepileptic drugs on seizures in mice with corneal kindling against the background of low-dose premedication with carbamazepine and sulthiame
DOI:
https://doi.org/10.15587/2519-4852.2023.265308Keywords:
antiepileptic drugs, cytochrome P450, corneal kindling, drug resistance epilepsy, carbamazepine, sulthiameAbstract
The aim. The aim of the study was to evaluate the effectiveness of antiepileptic drugs (AED) with a different mechanism of action against the background of prior use of low doses of carbamazepine and sultiam in the model of corneal kindling in mice.
Materials and methods. The corneal kindling model in mice was used. The convulsive model was reproduced under the parallel preliminary administration of carbamazepine and sulthiame 30 minutes before electrostimulation. The anticonvulsant activity of AED (sulthiame, levetiracetam, carbamazepine, valproate, lamotrigine and retigabine) was studied under conditions after the formation of a stable syndrome of the generalised convulsive activity.
Results and discussion. The administration of carbamazepine and sulthiame drugs modulates the activity of the cytochrome P450 enzyme system. Thus, carbamazepine in the dose of 7 and 12 mg/kg showed no significant anticonvulsant activity (the convulsive intensity – 4.42±0.25 points; 4.44±0.32 points) after its preliminary chronic administration, the same doses of carbamazepine showed a noticeable anticonvulsant effect in the control group of animals (3.52±0.26 points; 3.2±0.6 points, respectively). The anticonvulsant activity of lamotrigine changed both in the case of the preliminary chronic administration of an inducer (carbamazepine), and an inhibitor (sulthiame) of the cytochrome P450 system.
Conclusion. Changes in the pharmacological effects of AED observed against the background of chronic administration of carbamazepine and sulthiame, in our opinion, may be due to both the modulation of the cytochrome P450 system and other groups of enzymes involved in the AED metabolism
References
- Beghi, E. (2019). The Epidemiology of Epilepsy. Neuroepidemiology, 54 (2), 185–191. doi: https://doi.org/10.1159/000503831
- Fattorusso, A., Matricardi, S., Mencaroni, E., Dell’Isola, G. B., Di Cara, G., Striano, P., Verrotti, A. (2021). The Pharmacoresistant Epilepsy: An Overview on Existant and New Emerging Therapies. Frontiers in Neurology, 12. doi: https://doi.org/10.3389/fneur.2021.674483
- Tang, F., Hartz, A. M. S., Bauer, B. (2017). Drug-Resistant Epilepsy: Multiple Hypotheses, Few Answers. Frontiers in Neurology, 8. doi: https://doi.org/10.3389/fneur.2017.00301
- Łukawski, K., Czuczwar, S. J. (2021). Understanding mechanisms of drug resistance in epilepsy and strategies for overcoming it. Expert Opinion on Drug Metabolism & Toxicology, 17 (9), 1075–1090. doi: https://doi.org/10.1080/17425255.2021.1959912
- Nogueira, M. H., Yasuda, C. L., Coan, A. C., Kanner, A. M., Cendes, F. (2017). Concurrent mood and anxiety disorders are associated with pharmacoresistant seizures in patients with MTLE. Epilepsia, 58 (7), 1268–1276. doi: https://doi.org/10.1111/epi.13781
- Begley, C. E., Durgin, T. L. (2015). The direct cost of epilepsy in the United States: A systematic review of estimates. Epilepsia, 56 (9), 1376–1387. doi: https://doi.org/10.1111/epi.13084
- Devinsky, O., Spruill, T., Thurman, D., Friedman, D. (2015). Recognizing and preventing epilepsy-related mortality. Neurology, 86 (8), 779–786. doi: https://doi.org/10.1212/wnl.0000000000002253
- Löscher, W., Potschka, H., Sisodiya, S. M., Vezzani, A. (2020). Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacological Reviews, 72 (3), 606–638. doi: https://doi.org/10.1124/pr.120.019539
- Ghosh, C., Puvenna, V., Gonzalez-Martinez, J., Janigro, D., Marchi, N. (2011). Blood-Brain Barrier P450 Enzymes and Multidrug Transporters in Drug Resistance: A Synergistic Role in Neurological Diseases. Current Drug Metabolism, 12 (8), 742–749. doi: https://doi.org/10.2174/138920011798357051
- Sekar, K., Pack, A. (2019). Epidiolex as adjunct therapy for treatment of refractory epilepsy: a comprehensive review with a focus on adverse effects. F1000Research, 8, 234. doi: https://doi.org/10.12688/f1000research.16515.1
- Patsalos P. N. (2016). Antiepileptic drug interactions: a clinical guide. Springer. doi: https://doi.org/10.1007/978-3-319-32909-3
- Farrokh, S., Tahsili-Fahadan, P., Ritzl, E. K., Lewin, J. J., Mirski, M. A. (2018). Antiepileptic drugs in critically ill patients. Critical Care, 22 (1). doi: https://doi.org/10.1186/s13054-018-2066-1
- Ke, X., Cheng, Y., Yu, N., Di, Q. (2019). Effects of carbamazepine on the P-gp and CYP3A expression correlated with PXR or NF-κB activity in the bEnd.3 cells. Neuroscience Letters, 690, 48–55. doi: https://doi.org/10.1016/j.neulet.2018.10.016
- Peigné, S., Rey, E., Le Guern, M.-E., Dulac, O., Chiron, C., Pons, G., Jullien, V. (2014). Reassessment of stiripentol pharmacokinetics in healthy adult volunteers. Epilepsy Research, 108 (5), 909–916. doi: https://doi.org/10.1016/j.eplepsyres.2014.03.009
- Potschka, H., Löscher, W. (1999). Corneal kindling in mice: behavioral and pharmacological differences to conventional kindling. Epilepsy Research, 37 (2), 109–120. doi: https://doi.org/10.1016/s0920-1211(99)00062-5
- Leclercq, K., Matagne, A., Kaminski, R. M. (2014). Low potency and limited efficacy of antiepileptic drugs in the mouse 6Hz corneal kindling model. Epilepsy Research, 108 (4), 675–683. doi: https://doi.org/10.1016/j.eplepsyres.2014.02.013
- Barker-Haliski, M. L., Johnson, K., Billingsley, P., Huff, J., Handy, L. J., Khaleel, R. et al. (2017). Validation of a Preclinical Drug Screening Platform for Pharmacoresistant Epilepsy. Neurochemical Research, 42 (7), 1904–1918. doi: https://doi.org/10.1007/s11064-017-2227-7
- Remigio, G. J., Loewen, J. L., Heuston, S., Helgeson, C., White, H. S., Wilcox, K. S., West, P. J. (2017). Corneal kindled C57BL/6 mice exhibit saturated dentate gyrus long-term potentiation and associated memory deficits in the absence of overt neuron loss. Neurobiology of Disease, 105, 221–234. doi: https://doi.org/10.1016/j.nbd.2017.06.006
- Koneval, Z., Knox, K. M., White, H. S., Barker-Haliski, M. (2018). Lamotrigine-resistant corneal-kindled mice: A model of pharmacoresistant partial epilepsy for moderate-throughput drug discovery. Epilepsia, 59 (6), 1245–1256. doi: https://doi.org/10.1111/epi.14190
- Barton, M. E., Klein, B. D., Wolf, H. H., Steve White, H. (2001). Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. Epilepsy Research, 47 (3), 217–227. doi: https://doi.org/10.1016/s0920-1211(01)00302-3
- Koneval, Z., Knox, K. M., Memon, A., Zierath, D. K., White, H. S., Barker‐Haliski, M. (2020). Antiseizure drug efficacy and tolerability in established and novel drug discovery seizure models in outbred vs inbred mice. Epilepsia, 61 (9), 2022–2034. doi: https://doi.org/10.1111/epi.16624
- Hock, F. J. (Ed.) (2016). Drug discovery and evaluation: Pharmacological assays. Springer International Publishing. doi: https://doi.org/10.1007/978-3-319-05392-9
- Glantz, S. A. (1997). Primer of Biostatistics. New York: McGraw-Hill Inc., 473.
- Ghali, A. A., Ahmed, I., Fadel, W. A., Hassan, G. N. (2019). First Attack of Status Epilepticus in Adults: Etiology and Risk Factors. The Medical Journal of Cairo University, 87, 1357–1361. doi: https://doi.org/10.21608/mjcu.2019.53426
- Zhang, H., Lu, P., Tang, H.-L., Yan, H.-J., Jiang, W., Shi, H. et al. (2020). Valproate-Induced Epigenetic Upregulation of Hypothalamic Fto Expression Potentially Linked with Weight Gain. Cellular and Molecular Neurobiology, 41 (6), 1257–1269. doi: https://doi.org/10.1007/s10571-020-00895-2
- Verhaegen, A. A., Van Gaal, L. F. (2021). Drugs Affecting Body Weight, Body Fat Distribution, and Metabolic Function – Mechanisms and Possible Therapeutic or Preventive Measures: an Update. Current Obesity Reports, 10 (1), 1–13. doi: https://doi.org/10.1007/s13679-020-00419-5
- Xin, J., Yan, S., Hong, X., Zhang, H., Zha, J. (2021). Environmentally relevant concentrations of carbamazepine induced lipid metabolism disorder of Chinese rare minnow (Gobiocypris rarus) in a gender-specific pattern. Chemosphere, 265, 129080. doi: https://doi.org/10.1016/j.chemosphere.2020.129080
- Banach, M., Popławska, M., Borowicz-Reutt, K. K. (2018). Amiodarone, a multi-channel blocker, enhances anticonvulsive effect of carbamazepine in the mouse maximal electroshock model. Epilepsy Research, 140, 105–110. doi: https://doi.org/10.1016/j.eplepsyres.2018.01.003
- Zhao, G.-X., Zhang, Z., Cai, W.-K., Shen, M.-L., Wang, P., He, G.-H. (2021). Associations between CYP3A4, CYP3A5 and SCN1A polymorphisms and carbamazepine metabolism in epilepsy: A meta-analysis. Epilepsy Research, 173, 106615. doi: https://doi.org/10.1016/j.eplepsyres.2021.106615
- Sourbron, J., Chan, H., Wammes-van der Heijden, E. A., Klarenbeek, P., Wijnen, B. F. M., de Haan, G.-J. et al. (2018). Review on the relevance of therapeutic drug monitoring of levetiracetam. Seizure, 62, 131–135. doi: https://doi.org/10.1016/j.seizure.2018.09.004
- Praveen, A. N., Panchaksharimath, P., Nagaraj, K. (2020). A Comparative Study to Evaluate the Efficacy and Safety of Levetiracetam as an Add-on to Carbamazepine and Phenytoin in Focal Seizures at a Tertiary Care Hospital. Biomedical and Pharmacology Journal, 13 (1), 383–390. doi: https://doi.org/10.13005/bpj/1898
- Petrenaite, V., Öhman, I., Jantzen, F. P. T., Ekström, L. (2022). Effect of UGT1A4, UGT2B7, UGT2B15, UGT2B17 and ABC1B polymorphisms on lamotrigine metabolism in Danish patients. Epilepsy Research, 182, 106897. doi: https://doi.org/10.1016/j.eplepsyres.2022.106897
- Mitra-Ghosh, T., Callisto, S. P., Lamba, J. K., Remmel, R. P., Birnbaum, A. K., Barbarino, J. M. et al. (2020). PharmGKB summary: lamotrigine pathway, pharmacokinetics and pharmacodynamics. Pharmacogenetics and Genomics, 30 (4), 81–90. doi: https://doi.org/10.1097/fpc.0000000000000397
- Patsalos, P. N., Spencer, E. P., Berry, D. J. (2018). Therapeutic Drug Monitoring of Antiepileptic Drugs in Epilepsy: A 2018 Update. Therapeutic Drug Monitoring, 40 (5), 526–548. doi: https://doi.org/10.1097/ftd.0000000000000546
- Iannaccone, T., Sellitto, C., Manzo, V., Colucci, F., Giudice, V., Stefanelli, B. et al. (2021). Pharmacogenetics of Carbamazepine and Valproate: Focus on Polymorphisms of Drug Metabolizing Enzymes and Transporters. Pharmaceuticals, 14 (3), 204. doi: https://doi.org/10.3390/ph14030204
- Patsalos, P. N. (2013). Drug Interactions with the Newer Antiepileptic Drugs (AEDs) – Part 1: Pharmacokinetic and Pharmacodynamic Interactions Between AEDs. Clinical Pharmacokinetics, 52 (11), 927–966. doi: https://doi.org/10.1007/s40262-013-0087-0
- Janmohamed, M., Brodie, M. J., Kwan, P. (2020). Pharmacoresistance – Epidemiology, mechanisms, and impact on epilepsy treatment. Neuropharmacology, 168, 107790. doi: https://doi.org/10.1016/j.neuropharm.2019.107790
- Akamine, Y., Uehara, H., Miura, M., Yasui-Furukori, N., Uno, T. (2015). Multiple inductive effects of carbamazepine on combined therapy with paliperidone and amlodipine. Journal of Clinical Pharmacy and Therapeutics, 40 (4), 480–482. doi: https://doi.org/10.1111/jcpt.12286
- Elmeliegy, M., Vourvahis, M., Guo, C., Wang, D. D. (2020). Effect of P-glycoprotein (P-gp) Inducers on Exposure of P-gp Substrates: Review of Clinical Drug–Drug Interaction Studies. Clinical Pharmacokinetics, 59 (6), 699–714. doi: https://doi.org/10.1007/s40262-020-00867-1
- Zhang, C., Kwan, P., Zuo, Z., Baum, L. (2012). The transport of antiepileptic drugs by P-glycoprotein. Advanced Drug Delivery Reviews, 64 (10), 930–942. doi: https://doi.org/10.1016/j.addr.2011.12.003
- Marshall, G. F., Gonzalez-Sulser, A., Abbott, C. M. (2021). Modelling epilepsy in the mouse: challenges and solutions. Disease Models & Mechanisms, 14 (3). doi: https://doi.org/10.1242/dmm.047449
- Prut, L., Belzung, C. (2003). The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European Journal of Pharmacology, 463 (1-3), 3–33. doi: https://doi.org/10.1016/s0014-2999(03)01272-x
- Gastens, A. M., Brandt, C., Bankstahl, J. P., Löscher, W. (2008). Predictors of pharmacoresistant epilepsy: Pharmacoresistant rats differ from pharmacoresponsive rats in behavioral and cognitive abnormalities associated with experimentally induced epilepsy. Epilepsia, 49 (10), 1759–1776. doi: https://doi.org/10.1111/j.1528-1167.2008.01659.x
- Sarkisov, G. T., Karapetyan, L. M., Sarkisyan, Zh. S.. (2010). Individual behavioral characteristics of mice in the black-and-white camera test. Biological Journal of Armenia, 62 (1), 23.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Yurii Boiko, Yevhen Тantsura, Irina Boiko , Liudmyla Tantsura
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.