Peculiarities of the effect of antiepileptic drugs on seizures in mice with corneal kindling against the background of low-dose premedication with carbamazepine and sulthiame

Authors

DOI:

https://doi.org/10.15587/2519-4852.2023.265308

Keywords:

antiepileptic drugs, cytochrome P450, corneal kindling, drug resistance epilepsy, carbamazepine, sulthiame

Abstract

The aim. The aim of the study was to evaluate the effectiveness of antiepileptic drugs (AED) with a different mechanism of action against the background of prior use of low doses of carbamazepine and sultiam in the model of corneal kindling in mice.

Materials and methods. The corneal kindling model in mice was used. The convulsive model was reproduced under the parallel preliminary administration of carbamazepine and sulthiame 30 minutes before electrostimulation. The anticonvulsant activity of AED (sulthiame, levetiracetam, carbamazepine, valproate, lamotrigine and retigabine) was studied under conditions after the formation of a stable syndrome of the generalised convulsive activity.

Results and discussion. The administration of carbamazepine and sulthiame drugs modulates the activity of the cytochrome P450 enzyme system. Thus, carbamazepine in the dose of 7 and 12 mg/kg showed no significant anticonvulsant activity (the convulsive intensity – 4.42±0.25 points; 4.44±0.32 points) after its preliminary chronic administration, the same doses of carbamazepine showed a noticeable anticonvulsant effect in the control group of animals (3.52±0.26 points; 3.2±0.6 points, respectively). The anticonvulsant activity of lamotrigine changed both in the case of the preliminary chronic administration of an inducer (carbamazepine), and an inhibitor (sulthiame) of the cytochrome P450 system.

Conclusion. Changes in the pharmacological effects of AED observed against the background of chronic administration of carbamazepine and sulthiame, in our opinion, may be due to both the modulation of the cytochrome P450 system and other groups of enzymes involved in the AED metabolism

Author Biographies

Yurii Boiko, Odessa State Agrarian University

PhD, Associate Professor, Head of Department

Department of Physiology, Pathological Physiology and Biochemistry

Yevhen Тantsura, V. N. Karazin National University

Postgraduate Student

Department of General Practice -Family Medicine

Irina Boiko , Odessa National Medical University

PhD, Associate Professor

Department of Pharmacology and Pharmacognosy

Liudmyla Tantsura, State Institution "Institute of Neurology, Psychiatry and Narcology of National Academy of Medical Sciences of Ukraine"

Doctor of Medical Sciences, Professor

Department of Pediatric Psychoneurology and Paroxysmal Conditions

References

  1. Beghi, E. (2019). The Epidemiology of Epilepsy. Neuroepidemiology, 54 (2), 185–191. doi: https://doi.org/10.1159/000503831
  2. Fattorusso, A., Matricardi, S., Mencaroni, E., Dell’Isola, G. B., Di Cara, G., Striano, P., Verrotti, A. (2021). The Pharmacoresistant Epilepsy: An Overview on Existant and New Emerging Therapies. Frontiers in Neurology, 12. doi: https://doi.org/10.3389/fneur.2021.674483
  3. Tang, F., Hartz, A. M. S., Bauer, B. (2017). Drug-Resistant Epilepsy: Multiple Hypotheses, Few Answers. Frontiers in Neurology, 8. doi: https://doi.org/10.3389/fneur.2017.00301
  4. Łukawski, K., Czuczwar, S. J. (2021). Understanding mechanisms of drug resistance in epilepsy and strategies for overcoming it. Expert Opinion on Drug Metabolism & Toxicology, 17 (9), 1075–1090. doi: https://doi.org/10.1080/17425255.2021.1959912
  5. Nogueira, M. H., Yasuda, C. L., Coan, A. C., Kanner, A. M., Cendes, F. (2017). Concurrent mood and anxiety disorders are associated with pharmacoresistant seizures in patients with MTLE. Epilepsia, 58 (7), 1268–1276. doi: https://doi.org/10.1111/epi.13781
  6. Begley, C. E., Durgin, T. L. (2015). The direct cost of epilepsy in the United States: A systematic review of estimates. Epilepsia, 56 (9), 1376–1387. doi: https://doi.org/10.1111/epi.13084
  7. Devinsky, O., Spruill, T., Thurman, D., Friedman, D. (2015). Recognizing and preventing epilepsy-related mortality. Neurology, 86 (8), 779–786. doi: https://doi.org/10.1212/wnl.0000000000002253
  8. Löscher, W., Potschka, H., Sisodiya, S. M., Vezzani, A. (2020). Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacological Reviews, 72 (3), 606–638. doi: https://doi.org/10.1124/pr.120.019539
  9. Ghosh, C., Puvenna, V., Gonzalez-Martinez, J., Janigro, D., Marchi, N. (2011). Blood-Brain Barrier P450 Enzymes and Multidrug Transporters in Drug Resistance: A Synergistic Role in Neurological Diseases. Current Drug Metabolism, 12 (8), 742–749. doi: https://doi.org/10.2174/138920011798357051
  10. Sekar, K., Pack, A. (2019). Epidiolex as adjunct therapy for treatment of refractory epilepsy: a comprehensive review with a focus on adverse effects. F1000Research, 8, 234. doi: https://doi.org/10.12688/f1000research.16515.1
  11. Patsalos P. N. (2016). Antiepileptic drug interactions: a clinical guide. Springer. doi: https://doi.org/10.1007/978-3-319-32909-3
  12. Farrokh, S., Tahsili-Fahadan, P., Ritzl, E. K., Lewin, J. J., Mirski, M. A. (2018). Antiepileptic drugs in critically ill patients. Critical Care, 22 (1). doi: https://doi.org/10.1186/s13054-018-2066-1
  13. Ke, X., Cheng, Y., Yu, N., Di, Q. (2019). Effects of carbamazepine on the P-gp and CYP3A expression correlated with PXR or NF-κB activity in the bEnd.3 cells. Neuroscience Letters, 690, 48–55. doi: https://doi.org/10.1016/j.neulet.2018.10.016
  14. Peigné, S., Rey, E., Le Guern, M.-E., Dulac, O., Chiron, C., Pons, G., Jullien, V. (2014). Reassessment of stiripentol pharmacokinetics in healthy adult volunteers. Epilepsy Research, 108 (5), 909–916. doi: https://doi.org/10.1016/j.eplepsyres.2014.03.009
  15. Potschka, H., Löscher, W. (1999). Corneal kindling in mice: behavioral and pharmacological differences to conventional kindling. Epilepsy Research, 37 (2), 109–120. doi: https://doi.org/10.1016/s0920-1211(99)00062-5
  16. Leclercq, K., Matagne, A., Kaminski, R. M. (2014). Low potency and limited efficacy of antiepileptic drugs in the mouse 6Hz corneal kindling model. Epilepsy Research, 108 (4), 675–683. doi: https://doi.org/10.1016/j.eplepsyres.2014.02.013
  17. Barker-Haliski, M. L., Johnson, K., Billingsley, P., Huff, J., Handy, L. J., Khaleel, R. et al. (2017). Validation of a Preclinical Drug Screening Platform for Pharmacoresistant Epilepsy. Neurochemical Research, 42 (7), 1904–1918. doi: https://doi.org/10.1007/s11064-017-2227-7
  18. Remigio, G. J., Loewen, J. L., Heuston, S., Helgeson, C., White, H. S., Wilcox, K. S., West, P. J. (2017). Corneal kindled C57BL/6 mice exhibit saturated dentate gyrus long-term potentiation and associated memory deficits in the absence of overt neuron loss. Neurobiology of Disease, 105, 221–234. doi: https://doi.org/10.1016/j.nbd.2017.06.006
  19. Koneval, Z., Knox, K. M., White, H. S., Barker-Haliski, M. (2018). Lamotrigine-resistant corneal-kindled mice: A model of pharmacoresistant partial epilepsy for moderate-throughput drug discovery. Epilepsia, 59 (6), 1245–1256. doi: https://doi.org/10.1111/epi.14190
  20. Barton, M. E., Klein, B. D., Wolf, H. H., Steve White, H. (2001). Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. Epilepsy Research, 47 (3), 217–227. doi: https://doi.org/10.1016/s0920-1211(01)00302-3
  21. Koneval, Z., Knox, K. M., Memon, A., Zierath, D. K., White, H. S., Barker‐Haliski, M. (2020). Antiseizure drug efficacy and tolerability in established and novel drug discovery seizure models in outbred vs inbred mice. Epilepsia, 61 (9), 2022–2034. doi: https://doi.org/10.1111/epi.16624
  22. Hock, F. J. (Ed.) (2016). Drug discovery and evaluation: Pharmacological assays. Springer International Publishing. doi: https://doi.org/10.1007/978-3-319-05392-9
  23. Glantz, S. A. (1997). Primer of Biostatistics. New York: McGraw-Hill Inc., 473.
  24. Ghali, A. A., Ahmed, I., Fadel, W. A., Hassan, G. N. (2019). First Attack of Status Epilepticus in Adults: Etiology and Risk Factors. The Medical Journal of Cairo University, 87, 1357–1361. doi: https://doi.org/10.21608/mjcu.2019.53426
  25. Zhang, H., Lu, P., Tang, H.-L., Yan, H.-J., Jiang, W., Shi, H. et al. (2020). Valproate-Induced Epigenetic Upregulation of Hypothalamic Fto Expression Potentially Linked with Weight Gain. Cellular and Molecular Neurobiology, 41 (6), 1257–1269. doi: https://doi.org/10.1007/s10571-020-00895-2
  26. Verhaegen, A. A., Van Gaal, L. F. (2021). Drugs Affecting Body Weight, Body Fat Distribution, and Metabolic Function – Mechanisms and Possible Therapeutic or Preventive Measures: an Update. Current Obesity Reports, 10 (1), 1–13. doi: https://doi.org/10.1007/s13679-020-00419-5
  27. Xin, J., Yan, S., Hong, X., Zhang, H., Zha, J. (2021). Environmentally relevant concentrations of carbamazepine induced lipid metabolism disorder of Chinese rare minnow (Gobiocypris rarus) in a gender-specific pattern. Chemosphere, 265, 129080. doi: https://doi.org/10.1016/j.chemosphere.2020.129080
  28. Banach, M., Popławska, M., Borowicz-Reutt, K. K. (2018). Amiodarone, a multi-channel blocker, enhances anticonvulsive effect of carbamazepine in the mouse maximal electroshock model. Epilepsy Research, 140, 105–110. doi: https://doi.org/10.1016/j.eplepsyres.2018.01.003
  29. Zhao, G.-X., Zhang, Z., Cai, W.-K., Shen, M.-L., Wang, P., He, G.-H. (2021). Associations between CYP3A4, CYP3A5 and SCN1A polymorphisms and carbamazepine metabolism in epilepsy: A meta-analysis. Epilepsy Research, 173, 106615. doi: https://doi.org/10.1016/j.eplepsyres.2021.106615
  30. Sourbron, J., Chan, H., Wammes-van der Heijden, E. A., Klarenbeek, P., Wijnen, B. F. M., de Haan, G.-J. et al. (2018). Review on the relevance of therapeutic drug monitoring of levetiracetam. Seizure, 62, 131–135. doi: https://doi.org/10.1016/j.seizure.2018.09.004
  31. Praveen, A. N., Panchaksharimath, P., Nagaraj, K. (2020). A Comparative Study to Evaluate the Efficacy and Safety of Levetiracetam as an Add-on to Carbamazepine and Phenytoin in Focal Seizures at a Tertiary Care Hospital. Biomedical and Pharmacology Journal, 13 (1), 383–390. doi: https://doi.org/10.13005/bpj/1898
  32. Petrenaite, V., Öhman, I., Jantzen, F. P. T., Ekström, L. (2022). Effect of UGT1A4, UGT2B7, UGT2B15, UGT2B17 and ABC1B polymorphisms on lamotrigine metabolism in Danish patients. Epilepsy Research, 182, 106897. doi: https://doi.org/10.1016/j.eplepsyres.2022.106897
  33. Mitra-Ghosh, T., Callisto, S. P., Lamba, J. K., Remmel, R. P., Birnbaum, A. K., Barbarino, J. M. et al. (2020). PharmGKB summary: lamotrigine pathway, pharmacokinetics and pharmacodynamics. Pharmacogenetics and Genomics, 30 (4), 81–90. doi: https://doi.org/10.1097/fpc.0000000000000397
  34. Patsalos, P. N., Spencer, E. P., Berry, D. J. (2018). Therapeutic Drug Monitoring of Antiepileptic Drugs in Epilepsy: A 2018 Update. Therapeutic Drug Monitoring, 40 (5), 526–548. doi: https://doi.org/10.1097/ftd.0000000000000546
  35. Iannaccone, T., Sellitto, C., Manzo, V., Colucci, F., Giudice, V., Stefanelli, B. et al. (2021). Pharmacogenetics of Carbamazepine and Valproate: Focus on Polymorphisms of Drug Metabolizing Enzymes and Transporters. Pharmaceuticals, 14 (3), 204. doi: https://doi.org/10.3390/ph14030204
  36. Patsalos, P. N. (2013). Drug Interactions with the Newer Antiepileptic Drugs (AEDs) – Part 1: Pharmacokinetic and Pharmacodynamic Interactions Between AEDs. Clinical Pharmacokinetics, 52 (11), 927–966. doi: https://doi.org/10.1007/s40262-013-0087-0
  37. Janmohamed, M., Brodie, M. J., Kwan, P. (2020). Pharmacoresistance – Epidemiology, mechanisms, and impact on epilepsy treatment. Neuropharmacology, 168, 107790. doi: https://doi.org/10.1016/j.neuropharm.2019.107790
  38. Akamine, Y., Uehara, H., Miura, M., Yasui-Furukori, N., Uno, T. (2015). Multiple inductive effects of carbamazepine on combined therapy with paliperidone and amlodipine. Journal of Clinical Pharmacy and Therapeutics, 40 (4), 480–482. doi: https://doi.org/10.1111/jcpt.12286
  39. Elmeliegy, M., Vourvahis, M., Guo, C., Wang, D. D. (2020). Effect of P-glycoprotein (P-gp) Inducers on Exposure of P-gp Substrates: Review of Clinical Drug–Drug Interaction Studies. Clinical Pharmacokinetics, 59 (6), 699–714. doi: https://doi.org/10.1007/s40262-020-00867-1
  40. Zhang, C., Kwan, P., Zuo, Z., Baum, L. (2012). The transport of antiepileptic drugs by P-glycoprotein. Advanced Drug Delivery Reviews, 64 (10), 930–942. doi: https://doi.org/10.1016/j.addr.2011.12.003
  41. Marshall, G. F., Gonzalez-Sulser, A., Abbott, C. M. (2021). Modelling epilepsy in the mouse: challenges and solutions. Disease Models & Mechanisms, 14 (3). doi: https://doi.org/10.1242/dmm.047449
  42. Prut, L., Belzung, C. (2003). The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European Journal of Pharmacology, 463 (1-3), 3–33. doi: https://doi.org/10.1016/s0014-2999(03)01272-x
  43. Gastens, A. M., Brandt, C., Bankstahl, J. P., Löscher, W. (2008). Predictors of pharmacoresistant epilepsy: Pharmacoresistant rats differ from pharmacoresponsive rats in behavioral and cognitive abnormalities associated with experimentally induced epilepsy. Epilepsia, 49 (10), 1759–1776. doi: https://doi.org/10.1111/j.1528-1167.2008.01659.x
  44. Sarkisov, G. T., Karapetyan, L. M., Sarkisyan, Zh. S.. (2010). Individual behavioral characteristics of mice in the black-and-white camera test. Biological Journal of Armenia, 62 (1), 23.
Peculiarities of the effect of antiepileptic drugs on seizures in mice with corneal kindling against the background of low-dose premedication with carbamazepine and sulthiame

Downloads

Published

2023-06-30

How to Cite

Boiko, Y., Тantsura Y., Boiko , I. ., & Tantsura, L. (2023). Peculiarities of the effect of antiepileptic drugs on seizures in mice with corneal kindling against the background of low-dose premedication with carbamazepine and sulthiame. ScienceRise: Pharmaceutical Science, (3(43), 67–78. https://doi.org/10.15587/2519-4852.2023.265308

Issue

Section

Pharmaceutical Science