Broad-purpose antimicrobial chlorine-active polymers: suppression of multidrug-resistant microorganisms and microbial penetration resistance
DOI:
https://doi.org/10.15587/2519-4852.2022.266171Keywords:
antimicrobial polymers, active chlorine, N-Chlorosulfonamides, immobilization, antibiotic resistance, microbial penetration resistance, dressings, face masksAbstract
The aim of the work was to evaluate the antimicrobial activity of polymeric materials with immobilized N-Chlorosulfonamide groups against multidrug-resistant hospital strains of common microorganisms and to determine the resistance to microbial penetration of these materials.
Materials and methods: the studied samples were copolymers of styrene with divinylbenzene in the form of staple fibre and non-woven fabric with immobilized
N-Chlorosulfonamide groups of various structures. Hospital strains of microorganisms have been isolated from clinical material; their antibiotic sensitivity has been determined by the Kirby-Bauer method. The agar diffusion method determines the antimicrobial activity of the polymers. Resistance to microbial penetration of samples of non-woven fabric has been determined by the membrane filtration method.
Results: polymer samples have been synthesized with immobilized N-Chlorosulfonamide groups in the Na- and H-forms, and with the N, N-dichlorosulfonamide group, with chlorine concentration range 3.7 - 12.5 %. All samples demonstrated pronounced antimicrobial activity against both standard and hospital strains. Due to the higher specific surface area, staple fibre is generally more efficient. An increase in the zone of inhibition of the growth of microorganisms was observed with an increase in the concentration of immobilized chlorine. All the studied fabric samples are impermeable to S. aureus. The control samples containing the free sulfonamide group did not show antimicrobial properties.
Conclusions: synthesized chlorine-active polymers have a pronounced antimicrobial activity against multidrug-resistant microorganisms, demonstrate high resistance to microbial penetration and therefore are promising for creating a wide range of medical products on their basis: dressings, protective masks, antimicrobial filters, etc.
References
- Shahid, A., Aslam, B., Muzammil, S., Aslam, N., Shahid, M., Almatroudi, A. et. al. (2021). The prospects of antimicrobial coated medical implants. Journal of Applied Biomaterials & Functional Materials, 19. doi: https://doi.org/10.1177/22808000211040304
- Low, J. L., Kao, P. H.-N., Tambyah, P. A., Koh, G. L. E., Ling, H., Kline, K. A. et. al. (2021). Development of a polymer-based antimicrobial coating for efficacious urinary catheter protection. Biotechnology Notes, 2, 1–10. doi: https://doi.org/10.1016/j.biotno.2020.12.001
- Choudhury, M., Bindra, H. S., Singh, K., Singh, A. K., Nayak, R. (2022). Antimicrobial polymeric composites in consumer goods and healthcare sector: A healthier way to prevent infection. Polymers for Advanced Technologies, 33 (7), 1997–2024. doi: https://doi.org/10.1002/pat.5660
- Gulati, R., Sharma, S., Sharma, R. K. (2021). Antimicrobial textile: recent developments and functional perspective. Polymer Bulletin, 79 (8), 5747–5771. doi: https://doi.org/10.1007/s00289-021-03826-3
- Parham, S., Kharazi, A. Z., Bakhsheshi-Rad, H. R., Kharaziha, M., Ismail, A. F., Sharif, S. et. al. (2022). Antimicrobial Synthetic and Natural Polymeric Nanofibers as Wound Dressing: A Review. Advanced Engineering Materials, 24 (6). doi: https://doi.org/10.1002/adem.202101460
- Carmona-Ribeiro, A. M., Araújo, P. M. (2021). Antimicrobial Polymer – Based Assemblies: A Review. International Journal of Molecular Sciences, 22 (11), 5424. doi: https://doi.org/10.3390/ijms22115424
- Pullangott, G., Kannan, U., S., G., Kiran, D. V., Maliyekkal, S. M. (2021). A comprehensive review on antimicrobial face masks: an emerging weapon in fighting pandemics. RSC Advances, 11 (12), 6544–6576. doi: https://doi.org/10.1039/d0ra10009a
- Armentano, I., Barbanera, M., Carota, E., Crognale, S., Marconi, M., Rossi, S. et. al. (2021). Polymer Materials for Respiratory Protection: Processing, End Use, and Testing Methods. ACS Applied Polymer Materials, 3 (2), 531–548. doi: https://doi.org/10.1021/acsapm.0c01151
- Dugré, N., Ton, J., Perry, D., Garrison, S., Falk, J., McCormack, J. et. al. (2020). Masks for prevention of viral respiratory infections among health care workers and the public: PEER umbrella systematic review. Canadian family physician, 66 (7), 509–517.
- Ferris, M., Ferris, R., Workman, C., O’Connor, E., Enoch, D. A., Goldesgeyme, E. et. al. (2021). Efficacy of FFP3 respirators for prevention of SARS-CoV-2 infection in healthcare workers. ELife, 10. doi: https://doi.org/10.7554/elife.71131
- Deng, C., Seidi, F., Yong, Q., Jin, X., Li, C., Zheng, L., Yuan, Z., Xiao, H. (2022). Virucidal and biodegradable specialty cellulose nonwovens as personal protective equipment against COVID-19 pandemic. Journal of Advanced Research, 39, 147–156. doi: https://doi.org/10.1016/j.jare.2021.11.002
- Santos, M., Fonseca, A., Mendonça, P., Branco, R., Serra, A., Morais, P., & Coelho, J. (2016). Recent Developments in Antimicrobial Polymers: A Review. Materials, 9 (7), 599. doi: https://doi.org/10.3390/ma9070599
- Kamaruzzaman, N. F., Tan, L. P., Hamdan, R. H., Choong, S. S., Wong, W. K., Gibson, A. J. et. al. (2019). Antimicrobial Polymers: The Potential Replacement of Existing Antibiotics? International Journal of Molecular Sciences, 20 (11), 2747. doi: https://doi.org/10.3390/ijms20112747
- Qiu, H., Si, Z., Luo, Y., Feng, P., Wu, X., Hou, W., Zhu, Y., Chan-Park, M. B., Xu, L., Huang, D. (2020). The Mechanisms and the Applications of Antibacterial Polymers in Surface Modification on Medical Devices. Frontiers in Bioengineering and Biotechnology, 8. doi: https://doi.org/10.3389/fbioe.2020.00910
- Hui, F., Debiemme-Chouvy, C. (2013). Antimicrobial N-Halamine Polymers and Coatings: A Review of Their Synthesis, Characterization, and Applications. Biomacromolecules, 14 (3), 585–601. doi: https://doi.org/10.1021/bm301980q
- Liang, J., Wu, R., Wang, J.-W., Barnes, K., Worley, S. D., Cho, U., Lee, J. et. al. (2006). N-halamine biocidal coatings. Journal of Industrial Microbiology & Biotechnology, 34 (2), 157–163. https://doi.org/10.1007/s10295-006-0181-5
- Kohl, H. H., Wheatley, W. B., Worley, S. D., Bodor, N. (1980). Antimicrobial activity of N-chloramine compounds. Journal of Pharmaceutical Sciences, 69 (11), 1292–1295. doi: https://doi.org/10.1002/jps.2600691116
- Gottardi, W., Debabov, D., Nagl, M. (2013). N-Chloramines, a Promising Class of Well-Tolerated Topical Anti-Infectives. Antimicrobial Agents and Chemotherapy, 57 (3), 1107–1114. doi: https://doi.org/10.1128/aac.02132-12
- Grace, V. G., Rajasekhara, R. S. (2021). Recent advances in the synthesis of organic chloramines and their insights into health care. New Journal of Chemistry, 45 (19), 8386–8408. doi: https://doi.org/10.1039/d1nj01086g
- Wang, F., Huang, L., Zhang, P., Si, Y., Yu, J., Ding, B. (2020). Antibacterial N-halamine fibrous materials. Composites Communications, 22, 100487. doi: https://doi.org/10.1016/j.coco.2020.100487
- Demir, B., Broughton, R., Qiao, M., Huang, T.-S., Worley, S. (2017). N-Halamine Biocidal Materials with Superior Antimicrobial Efficacies for Wound Dressings. Molecules, 22 (10), 1582. doi: https://doi.org/10.3390/molecules22101582
- Ahmed, A. E.-S. I., Hay, J. N., Bushell, M. E., Wardell, J. N., Cavalli, G. (2008). Biocidal polymers (II): Determination of biological activity of novel N-halamine biocidal polymers and evaluation for use in water filters. Reactive and Functional Polymers, 68 (10), 1448–1458. doi: https://doi.org/10.1016/j.reactfunctpolym.2008.06.021
- Kocer, H. B., Worley, S. D., Broughton, R. M., Huang, T. S. (2011). A novel N-halamine acrylamide monomer and its copolymers for antimicrobial coatings. Reactive and Functional Polymers, 71 (5), 561–568. doi: https://doi.org/10.1016/j.reactfunctpolym.2011.02.002
- Cerkez, I., Kocer, H. B., Worley, S. D., Broughton, R. M., Huang, T. S. (2011). N-Halamine Biocidal Coatings via a Layer-by-Layer Assembly Technique. Langmuir, 27 (7), 4091–4097. doi: https://doi.org/10.1021/la104923x
- Thomas, E. L., Grisham, M. B., Margaret Jefferson, M. (1986). Preparation and characterization of chloramines. Methods in Enzymology, 569–585. doi: https://doi.org/10.1016/s0076-6879(86)32042-1
- Cao, Z., Sun, Y. (2008). N-halamine-based chitosan: Preparation, characterization, and antimicrobial function. Journal of Biomedical Materials Research Part A, 85A (1), 99–107. doi: https://doi.org/10.1002/jbm.a.31463
- Tan, K., Obendorf, S. K. (2007). Development of an antimicrobial microporous polyurethane membrane.Journal of Membrane Science, 289 (1-2), 199–209. doi: https://doi.org/10.1016/j.memsci.2006.11.054
- Ren, X., Kou, L., Kocer, H. B., Zhu, C., Worley, S. D., Broughton, R. M. (2008). Antimicrobial coating of an N-halamine biocidal monomer on cotton fibers via admicellar polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317 (1-3), 711–716. doi: https://doi.org/10.1016/j.colsurfa.2007.12.007
- Kou, L., Liang, J., Ren, X., Kocer, H. B., Worley, S. D., Broughton, R. M., Huang, T. S. (2009). Novel N-halamine silanes.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 345 (1-3), 88–94. doi: https://doi.org/10.1016/j.colsurfa.2009.04.047
- Li, L., Pu, T., Zhanel, G., Zhao, N., Ens, W., Liu, S. (2012). New biocide with bothN-chloramine and quaternary ammonium moieties exerts enhanced bactericidal activity. Advanced Healthcare Materials, 1 (5), 609–620. doi: https://doi.org/10.1002/adhm.201200018
- Chen, Y., Han, Q. (2011). Designing N-halamine based antibacterial surface on polymers: Fabrication, characterization, and biocidal functions. Applied Surface Science, 257 (14), 6034–6039. doi: https://doi.org/10.1016/j.apsusc.2011.01.115
- Gottardi, W. (1992). Wäßrige chloramin T lösungen Als Desinfektionsmittel: Chemische Zusammensetzung, Reaktivität und toxizität. Archiv Der Pharmazie, 325 (7), 377–384. doi: https://doi.org/10.1002/ardp.19923250702
- Emerson, D. W. (1990). Polymer-bound active chlorine: Disinfection of water in a flow system. Polymer Supported Reagents. 5. Industrial & Engineering Chemistry Research, 29 (3), 448–450. doi: https://doi.org/10.1021/ie00099a022
- Emerson, D. W. (1991). Slow release of active chlorine and bromine from styrene-divinylbenzene copolymers bearing N,N-dichlorosulfonamide, N-chloro-n-alkylsulfonamide and N-bromo-N-alkylsulfonamide functional groups. Polymer Supported Reagents. 6. Industrial & Engineering Chemistry Research, 30 (11), 2426–2430. doi: https://doi.org/10.1021/ie00059a010
- Bogoczek, R., Kociołek-Balawejder, E. (1989). Studies on a macromolecular dichloroamine – the N,N‐dichloro-poly(styrene‐co‐divinylbenzene) sulphonamide. Angewandte Makromolekulare Chemie, 169 (1), 119–135. doi: https://doi.org/10.1002/apmc.1989.051690111
- Zhang, Y., Emerson, D. W., Steinberg, S. M. (2003). Destruction of cyanide in water using N-chlorinated secondary sulfonamide-substituted macroporous poly(styrene-co-divinylbenzene). Industrial & Engineering Chemistry Research, 42 (24), 5959–5963. doi: https://doi.org/10.1021/ie030151l
- Bogoczek, R., Kociolek-Balawejder, E., Stanisławska, E., Zabska, A. (2007). Oxidation of Fe(II) to Fe(III) by heterogeneous oxidant as a convenient process for iron removal from water. Environmental Engineering – Proceedings of the 2nd National Congress of Environmental Engineering, 183–190.
- Maddah, B. (2014). Anti-bacterial Activity of N-halamin in Hospital Fabrics: New Synthesis Approach and Examination of Anti-Bacterial Characteristics. Journal of Life Science and Biomedicine, 4 (6), 575–578.
- Maddah, B., Azimi, M. (2012). Preparation of N,N-dichloropolystyrene sulfonamide nanofiber asa regenerable self-decontaminating material for protection against chemical warfareagents. International Journal of Nano Dimension, 2 (4), 253–259.
- Soldatov, V. S. (2008). Syntheses and the main properties of Fiban fibrous ion exchangers.Solvent Extraction and Ion Exchange, 26 (5), 457–513. doi: https://doi.org/10.1080/07366290802301358
- Toropin, V., Burmistrov, K., Murashevych, B., Kremenchutskyi, G. (2016). Synthesis and emission of active chlorine from immobilized N-chloro-N-alkylsulfonamides. ScienceRise, 4 (21), 22–30. doi: https://doi.org/10.15587/2313-8416.2016.66881
- Toropin, V., Murashevych, B., Stepanskyi, D., Toropin, M., Kremenchutskiy, H., Burmistrov, K. (2019). New forms of immobilized active chlorine and its potential applications in medicine. Journal of the National Academy of Medical Sciences of Ukraine, 3, 340–352. doi: https://doi.org/10.37621/jnamsu-2019-3-340-352
- Murashevych, B., Toropin, V., Stepanskyi, D., Maslak, H., Burmistrov, K., Kotok, V., Kovalenko, V. (2021). Synthesis of new immobilized N-chloro-sulfonamides and release of active chlorine from them. EUREKA: Physics and Engineering, 4, 3–13. doi: https://doi.org/10.21303/2461-4262.2021.001929
- Dronov, S., Mamchur, V., Koshevaya, I., Stepanskiy, D., Kremenchutskiy, H., Toropin, B. et. al. (2019). New wound dressings with prolonged action. Zaporozhye medical journal, 21 (3), 365–373. doi: http://doi.org/10.14739/2310-1210.2019.3.169189
- Burmistrov, K., Toropin, V., Kremenchutskiy, H., Polikarpov, A., Shunkevich, A. (2016). A new chlorine-releasing material for a wide range of purposes: Structure and properties. Problems of Biological, Medical and Pharmaceutical Chemistry, 12 (19), 10–14.
- Burmistrov, K., Toropin, V., Ryabenko, V., Kremenchutskiy, H., Balalaev, A. (2014). Emission of active chlorine from immobilized N-chlorosulfonamides. Voprosy Khimii i Khimicheskoi Tekhnologii, 3, 30–36.
- Toropin, V., Burmistrov, K., Surmasheva, E., Romanenko, L. (2016). Study of the antimicrobial properties of immobilized fibrous N,N-dichloro sulfonamides. Science Rise: Pharmaceutical Science, 4 (4), 48–52. doi: http://doi.org/10.14739/2409-2932.2016.3.77993
- Guo, Y., Song, G., Sun, M., Wang, J., Wang, Y. (2020). Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology, 10. doi: https://doi.org/10.3389/fcimb.2020.00107
- Serra, R., Grande, R., Butrico, L., Rossi, A., Settimio, U. F., Caroleo, B., et. al. (2015). Chronic wound infections: The role ofpseudomonas aeruginosaandstaphylococcus aureus. Expert Review of Anti-Infective Therapy, 13 (5), 605–613. doi: https://doi.org/10.1586/14787210.2015.1023291
- Rahim, K., Saleha, S., Basit, A., Zhu, X., Ahmed, I., Huo, L. et. al. (2017). Pseudomonas aeruginosa as a powerful biofilm producer and positive action of amikacin against isolates from chronic wounds. Jundishapur Journal of Microbiology, 10 (10). doi: https://doi.org/10.5812/jjm.57564
- Di Lodovico, S., Cataldi, V., Di Campli, E., Ancarani, E., Cellini, L., Di Giulio, M. (2017). Enterococcus hirae biofilm formation on hospital material surfaces and effect of new biocides. Environmental Health and Preventive Medicine, 22 (1). doi: https://doi.org/10.1186/s12199-017-0670-3
- Gil, J., Solis, M., Higa, A., Davis, S. C. (2022). Candida albicans infections: A novel porcine wound model to evaluate treatment efficacy. BMC Microbiology, 22 (1).doi: https://doi.org/10.1186/s12866-022-02460-x
- EN 12353:2006 Chemical disinfectants and antiseptics – Preservation of test organisms used for the determination of bactericidal, mycobactericidal, sporicidal and fungicidal activity (2006). Brussels: European Committee for Standardization. doi: https://doi.org/10.3403/30143742
- Jorgensen, J. H., Turnidge, J. D.; Murray, P. R., Baron, E. J., Jorgensen, J. H., Landry, M. L., Pfaller, M. A. (Eds.) (2007). Susceptibility test methods: dilution and disk diffusion methods. Manual of clinical microbiology. Washington: ASM Press, 1152–1172. doi: https://doi.org/10.1128/9781555817381.ch71
- Sarker, M. M., Islam, K. N., Huri, H. Z., Rahman, M., Imam, H., Hosen, M. B. et. al. (2014).Studies of the impact of occupational exposure of pharmaceutical workers on the development of Antimicrobial Drug Resistance. Journal of Occupational Health, 56 (4), 260–270. doi: https://doi.org/10.1539/joh.14-0012-oa
- Mao, G., Song, Y., Bartlam, M., Wang, Y. (2018). Long-term effects of residual chlorine on pseudomonas aeruginosa in simulated drinking water fed with low AOC medium. Frontiers in Microbiology, 9. doi: https://doi.org/10.3389/fmicb.2018.00879
- Murashevych, B., Girenko, D., Maslak, H., Stepanskyi, D., Abraimova, O., Netronina, O. et. al. (2021).Acute inhalation toxicity of aerosolized electrochemically generated solution of sodium hypochlorite. Inhalation Toxicology, 34 (1-2), 1–13. doi: https://doi.org/10.1080/08958378.2021.2013348
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Bohdan Murashevych, Iryna Koshova, Elena Surmasheva, Dmitry Girenko, Vasyl Chuiko, Dmytro Stepanskyi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.