Broad-purpose antimicrobial chlorine-active polymers: suppression of multidrug-resistant microorganisms and microbial penetration resistance

Authors

DOI:

https://doi.org/10.15587/2519-4852.2022.266171

Keywords:

antimicrobial polymers, active chlorine, N-Chlorosulfonamides, immobilization, antibiotic resistance, microbial penetration resistance, dressings, face masks

Abstract

The aim of the work was to evaluate the antimicrobial activity of polymeric materials with immobilized N-Chlorosulfonamide groups against multidrug-resistant hospital strains of common microorganisms and to determine the resistance to microbial penetration of these materials.

Materials and methods: the studied samples were copolymers of styrene with divinylbenzene in the form of staple fibre and non-woven fabric with immobilized

N-Chlorosulfonamide groups of various structures. Hospital strains of microorganisms have been isolated from clinical material; their antibiotic sensitivity has been determined by the Kirby-Bauer method. The agar diffusion method determines the antimicrobial activity of the polymers. Resistance to microbial penetration of samples of non-woven fabric has been determined by the membrane filtration method.

Results: polymer samples have been synthesized with immobilized N-Chlorosulfonamide groups in the Na- and H-forms, and with the N, N-dichlorosulfonamide group, with chlorine concentration range 3.7 - 12.5 %. All samples demonstrated pronounced antimicrobial activity against both standard and hospital strains. Due to the higher specific surface area, staple fibre is generally more efficient. An increase in the zone of inhibition of the growth of microorganisms was observed with an increase in the concentration of immobilized chlorine. All the studied fabric samples are impermeable to S. aureus. The control samples containing the free sulfonamide group did not show antimicrobial properties.

Conclusions: synthesized chlorine-active polymers have a pronounced antimicrobial activity against multidrug-resistant microorganisms, demonstrate high resistance to microbial penetration and therefore are promising for creating a wide range of medical products on their basis: dressings, protective masks, antimicrobial filters, etc.

Author Biographies

Bohdan Murashevych, Dnipro State Medical University

PhD, Associate Professor

Department of Biochemistry and Medical Chemistry

Iryna Koshova, Dnipro State Medical University

PhD, Associate Professor

Department of Microbiology, Virology, Immunology, Epidemiology and Medical and Biological Physics and Informatics

Elena Surmasheva, State Institution “O. M. Marzieiev Institute for Public Health” National Academy of Medicine Sciences of Ukraine

Doctor of Medical Sciences, Professor

Laboratory of Sanitary Microbiology and Disinfectology

Dmitry Girenko, Ukrainian State University of Chemical Technology

Doctor of Chemical Sciences, Professor

Department of Physical Chemistry

Vasyl Chuiko, Dnipro State Medical University

PhD

Department of Obstetrics and Gynecology

Dmytro Stepanskyi, Dnipro State Medical University

Doctor of Medical Sciences, Professor

Department of Microbiology, Virology, Immunology, Epidemiology and Medical and Biological Physics and Informatics

References

  1. Shahid, A., Aslam, B., Muzammil, S., Aslam, N., Shahid, M., Almatroudi, A. et. al. (2021). The prospects of antimicrobial coated medical implants. Journal of Applied Biomaterials & Functional Materials, 19. doi: https://doi.org/10.1177/22808000211040304
  2. Low, J. L., Kao, P. H.-N., Tambyah, P. A., Koh, G. L. E., Ling, H., Kline, K. A. et. al. (2021). Development of a polymer-based antimicrobial coating for efficacious urinary catheter protection. Biotechnology Notes, 2, 1–10. doi: https://doi.org/10.1016/j.biotno.2020.12.001
  3. Choudhury, M., Bindra, H. S., Singh, K., Singh, A. K., Nayak, R. (2022). Antimicrobial polymeric composites in consumer goods and healthcare sector: A healthier way to prevent infection. Polymers for Advanced Technologies, 33 (7), 1997–2024. doi: https://doi.org/10.1002/pat.5660
  4. Gulati, R., Sharma, S., Sharma, R. K. (2021). Antimicrobial textile: recent developments and functional perspective. Polymer Bulletin, 79 (8), 5747–5771. doi: https://doi.org/10.1007/s00289-021-03826-3
  5. Parham, S., Kharazi, A. Z., Bakhsheshi-Rad, H. R., Kharaziha, M., Ismail, A. F., Sharif, S. et. al. (2022). Antimicrobial Synthetic and Natural Polymeric Nanofibers as Wound Dressing: A Review. Advanced Engineering Materials, 24 (6). doi: https://doi.org/10.1002/adem.202101460
  6. Carmona-Ribeiro, A. M., Araújo, P. M. (2021). Antimicrobial Polymer – Based Assemblies: A Review. International Journal of Molecular Sciences, 22 (11), 5424. doi: https://doi.org/10.3390/ijms22115424
  7. Pullangott, G., Kannan, U., S., G., Kiran, D. V., Maliyekkal, S. M. (2021). A comprehensive review on antimicrobial face masks: an emerging weapon in fighting pandemics. RSC Advances, 11 (12), 6544–6576. doi: https://doi.org/10.1039/d0ra10009a
  8. Armentano, I., Barbanera, M., Carota, E., Crognale, S., Marconi, M., Rossi, S. et. al. (2021). Polymer Materials for Respiratory Protection: Processing, End Use, and Testing Methods. ACS Applied Polymer Materials, 3 (2), 531–548. doi: https://doi.org/10.1021/acsapm.0c01151
  9. Dugré, N., Ton, J., Perry, D., Garrison, S., Falk, J., McCormack, J. et. al. (2020). Masks for prevention of viral respiratory infections among health care workers and the public: PEER umbrella systematic review. Canadian family physician, 66 (7), 509–517.
  10. Ferris, M., Ferris, R., Workman, C., O’Connor, E., Enoch, D. A., Goldesgeyme, E. et. al. (2021). Efficacy of FFP3 respirators for prevention of SARS-CoV-2 infection in healthcare workers. ELife, 10. doi: https://doi.org/10.7554/elife.71131
  11. Deng, C., Seidi, F., Yong, Q., Jin, X., Li, C., Zheng, L., Yuan, Z., Xiao, H. (2022). Virucidal and biodegradable specialty cellulose nonwovens as personal protective equipment against COVID-19 pandemic. Journal of Advanced Research, 39, 147–156. doi: https://doi.org/10.1016/j.jare.2021.11.002
  12. Santos, M., Fonseca, A., Mendonça, P., Branco, R., Serra, A., Morais, P., & Coelho, J. (2016). Recent Developments in Antimicrobial Polymers: A Review. Materials, 9 (7), 599. doi: https://doi.org/10.3390/ma9070599
  13. Kamaruzzaman, N. F., Tan, L. P., Hamdan, R. H., Choong, S. S., Wong, W. K., Gibson, A. J. et. al. (2019). Antimicrobial Polymers: The Potential Replacement of Existing Antibiotics? International Journal of Molecular Sciences, 20 (11), 2747. doi: https://doi.org/10.3390/ijms20112747
  14. Qiu, H., Si, Z., Luo, Y., Feng, P., Wu, X., Hou, W., Zhu, Y., Chan-Park, M. B., Xu, L., Huang, D. (2020). The Mechanisms and the Applications of Antibacterial Polymers in Surface Modification on Medical Devices. Frontiers in Bioengineering and Biotechnology, 8. doi: https://doi.org/10.3389/fbioe.2020.00910
  15. Hui, F., Debiemme-Chouvy, C. (2013). Antimicrobial N-Halamine Polymers and Coatings: A Review of Their Synthesis, Characterization, and Applications. Biomacromolecules, 14 (3), 585–601. doi: https://doi.org/10.1021/bm301980q
  16. Liang, J., Wu, R., Wang, J.-W., Barnes, K., Worley, S. D., Cho, U., Lee, J. et. al. (2006). N-halamine biocidal coatings. Journal of Industrial Microbiology & Biotechnology, 34 (2), 157–163. https://doi.org/10.1007/s10295-006-0181-5
  17. Kohl, H. H., Wheatley, W. B., Worley, S. D., Bodor, N. (1980). Antimicrobial activity of N-chloramine compounds. Journal of Pharmaceutical Sciences, 69 (11), 1292–1295. doi: https://doi.org/10.1002/jps.2600691116
  18. Gottardi, W., Debabov, D., Nagl, M. (2013). N-Chloramines, a Promising Class of Well-Tolerated Topical Anti-Infectives. Antimicrobial Agents and Chemotherapy, 57 (3), 1107–1114. doi: https://doi.org/10.1128/aac.02132-12
  19. Grace, V. G., Rajasekhara, R. S. (2021). Recent advances in the synthesis of organic chloramines and their insights into health care. New Journal of Chemistry, 45 (19), 8386–8408. doi: https://doi.org/10.1039/d1nj01086g
  20. Wang, F., Huang, L., Zhang, P., Si, Y., Yu, J., Ding, B. (2020). Antibacterial N-halamine fibrous materials. Composites Communications, 22, 100487. doi: https://doi.org/10.1016/j.coco.2020.100487
  21. Demir, B., Broughton, R., Qiao, M., Huang, T.-S., Worley, S. (2017). N-Halamine Biocidal Materials with Superior Antimicrobial Efficacies for Wound Dressings. Molecules, 22 (10), 1582. doi: https://doi.org/10.3390/molecules22101582
  22. Ahmed, A. E.-S. I., Hay, J. N., Bushell, M. E., Wardell, J. N., Cavalli, G. (2008). Biocidal polymers (II): Determination of biological activity of novel N-halamine biocidal polymers and evaluation for use in water filters. Reactive and Functional Polymers, 68 (10), 1448–1458. doi: https://doi.org/10.1016/j.reactfunctpolym.2008.06.021
  23. Kocer, H. B., Worley, S. D., Broughton, R. M., Huang, T. S. (2011). A novel N-halamine acrylamide monomer and its copolymers for antimicrobial coatings. Reactive and Functional Polymers, 71 (5), 561–568. doi: https://doi.org/10.1016/j.reactfunctpolym.2011.02.002
  24. Cerkez, I., Kocer, H. B., Worley, S. D., Broughton, R. M., Huang, T. S. (2011). N-Halamine Biocidal Coatings via a Layer-by-Layer Assembly Technique. Langmuir, 27 (7), 4091–4097. doi: https://doi.org/10.1021/la104923x
  25. Thomas, E. L., Grisham, M. B., Margaret Jefferson, M. (1986). Preparation and characterization of chloramines. Methods in Enzymology, 569–585. doi: https://doi.org/10.1016/s0076-6879(86)32042-1
  26. Cao, Z., Sun, Y. (2008). N-halamine-based chitosan: Preparation, characterization, and antimicrobial function. Journal of Biomedical Materials Research Part A, 85A (1), 99–107. doi: https://doi.org/10.1002/jbm.a.31463
  27. Tan, K., Obendorf, S. K. (2007). Development of an antimicrobial microporous polyurethane membrane.Journal of Membrane Science, 289 (1-2), 199–209. doi: https://doi.org/10.1016/j.memsci.2006.11.054
  28. Ren, X., Kou, L., Kocer, H. B., Zhu, C., Worley, S. D., Broughton, R. M. (2008). Antimicrobial coating of an N-halamine biocidal monomer on cotton fibers via admicellar polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317 (1-3), 711–716. doi: https://doi.org/10.1016/j.colsurfa.2007.12.007
  29. Kou, L., Liang, J., Ren, X., Kocer, H. B., Worley, S. D., Broughton, R. M., Huang, T. S. (2009). Novel N-halamine silanes.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 345 (1-3), 88–94. doi: https://doi.org/10.1016/j.colsurfa.2009.04.047
  30. Li, L., Pu, T., Zhanel, G., Zhao, N., Ens, W., Liu, S. (2012). New biocide with bothN-chloramine and quaternary ammonium moieties exerts enhanced bactericidal activity. Advanced Healthcare Materials, 1 (5), 609–620. doi: https://doi.org/10.1002/adhm.201200018
  31. Chen, Y., Han, Q. (2011). Designing N-halamine based antibacterial surface on polymers: Fabrication, characterization, and biocidal functions. Applied Surface Science, 257 (14), 6034–6039. doi: https://doi.org/10.1016/j.apsusc.2011.01.115
  32. Gottardi, W. (1992). Wäßrige chloramin T lösungen Als Desinfektionsmittel: Chemische Zusammensetzung, Reaktivität und toxizität. Archiv Der Pharmazie, 325 (7), 377–384. doi: https://doi.org/10.1002/ardp.19923250702
  33. Emerson, D. W. (1990). Polymer-bound active chlorine: Disinfection of water in a flow system. Polymer Supported Reagents. 5. Industrial & Engineering Chemistry Research, 29 (3), 448–450. doi: https://doi.org/10.1021/ie00099a022
  34. Emerson, D. W. (1991). Slow release of active chlorine and bromine from styrene-divinylbenzene copolymers bearing N,N-dichlorosulfonamide, N-chloro-n-alkylsulfonamide and N-bromo-N-alkylsulfonamide functional groups. Polymer Supported Reagents. 6. Industrial & Engineering Chemistry Research, 30 (11), 2426–2430. doi: https://doi.org/10.1021/ie00059a010
  35. Bogoczek, R., Kociołek-Balawejder, E. (1989). Studies on a macromolecular dichloroamine – the N,N‐dichloro-poly(styrene‐co‐divinylbenzene) sulphonamide. Angewandte Makromolekulare Chemie, 169 (1), 119–135. doi: https://doi.org/10.1002/apmc.1989.051690111
  36. Zhang, Y., Emerson, D. W., Steinberg, S. M. (2003). Destruction of cyanide in water using N-chlorinated secondary sulfonamide-substituted macroporous poly(styrene-co-divinylbenzene). Industrial & Engineering Chemistry Research, 42 (24), 5959–5963. doi: https://doi.org/10.1021/ie030151l
  37. Bogoczek, R., Kociolek-Balawejder, E., Stanisławska, E., Zabska, A. (2007). Oxidation of Fe(II) to Fe(III) by heterogeneous oxidant as a convenient process for iron removal from water. Environmental Engineering – Proceedings of the 2nd National Congress of Environmental Engineering, 183–190.
  38. Maddah, B. (2014). Anti-bacterial Activity of N-halamin in Hospital Fabrics: New Synthesis Approach and Examination of Anti-Bacterial Characteristics. Journal of Life Science and Biomedicine, 4 (6), 575–578.
  39. Maddah, B., Azimi, M. (2012). Preparation of N,N-dichloropolystyrene sulfonamide nanofiber asa regenerable self-decontaminating material for protection against chemical warfareagents. International Journal of Nano Dimension, 2 (4), 253–259.
  40. Soldatov, V. S. (2008). Syntheses and the main properties of Fiban fibrous ion exchangers.Solvent Extraction and Ion Exchange, 26 (5), 457–513. doi: https://doi.org/10.1080/07366290802301358
  41. Toropin, V., Burmistrov, K., Murashevych, B., Kremenchutskyi, G. (2016). Synthesis and emission of active chlorine from immobilized N-chloro-N-alkylsulfonamides. ScienceRise, 4 (21), 22–30. doi: https://doi.org/10.15587/2313-8416.2016.66881
  42. Toropin, V., Murashevych, B., Stepanskyi, D., Toropin, M., Kremenchutskiy, H., Burmistrov, K. (2019). New forms of immobilized active chlorine and its potential applications in medicine. Journal of the National Academy of Medical Sciences of Ukraine, 3, 340–352. doi: https://doi.org/10.37621/jnamsu-2019-3-340-352
  43. Murashevych, B., Toropin, V., Stepanskyi, D., Maslak, H., Burmistrov, K., Kotok, V., Kovalenko, V. (2021). Synthesis of new immobilized N-chloro-sulfonamides and release of active chlorine from them. EUREKA: Physics and Engineering, 4, 3–13. doi: https://doi.org/10.21303/2461-4262.2021.001929
  44. Dronov, S., Mamchur, V., Koshevaya, I., Stepanskiy, D., Kremenchutskiy, H., Toropin, B. et. al. (2019). New wound dressings with prolonged action. Zaporozhye medical journal, 21 (3), 365–373. doi: http://doi.org/10.14739/2310-1210.2019.3.169189
  45. Burmistrov, K., Toropin, V., Kremenchutskiy, H., Polikarpov, A., Shunkevich, A. (2016). A new chlorine-releasing material for a wide range of purposes: Structure and properties. Problems of Biological, Medical and Pharmaceutical Chemistry, 12 (19), 10–14.
  46. Burmistrov, K., Toropin, V., Ryabenko, V., Kremenchutskiy, H., Balalaev, A. (2014). Emission of active chlorine from immobilized N-chlorosulfonamides. Voprosy Khimii i Khimicheskoi Tekhnologii, 3, 30–36.
  47. Toropin, V., Burmistrov, K., Surmasheva, E., Romanenko, L. (2016). Study of the antimicrobial properties of immobilized fibrous N,N-dichloro sulfonamides. Science Rise: Pharmaceutical Science, 4 (4), 48–52. doi: http://doi.org/10.14739/2409-2932.2016.3.77993
  48. Guo, Y., Song, G., Sun, M., Wang, J., Wang, Y. (2020). Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology, 10. doi: https://doi.org/10.3389/fcimb.2020.00107
  49. Serra, R., Grande, R., Butrico, L., Rossi, A., Settimio, U. F., Caroleo, B., et. al. (2015). Chronic wound infections: The role ofpseudomonas aeruginosaandstaphylococcus aureus. Expert Review of Anti-Infective Therapy, 13 (5), 605–613. doi: https://doi.org/10.1586/14787210.2015.1023291
  50. Rahim, K., Saleha, S., Basit, A., Zhu, X., Ahmed, I., Huo, L. et. al. (2017). Pseudomonas aeruginosa as a powerful biofilm producer and positive action of amikacin against isolates from chronic wounds. Jundishapur Journal of Microbiology, 10 (10). doi: https://doi.org/10.5812/jjm.57564
  51. Di Lodovico, S., Cataldi, V., Di Campli, E., Ancarani, E., Cellini, L., Di Giulio, M. (2017). Enterococcus hirae biofilm formation on hospital material surfaces and effect of new biocides. Environmental Health and Preventive Medicine, 22 (1). doi: https://doi.org/10.1186/s12199-017-0670-3
  52. Gil, J., Solis, M., Higa, A., Davis, S. C. (2022). Candida albicans infections: A novel porcine wound model to evaluate treatment efficacy. BMC Microbiology, 22 (1).doi: https://doi.org/10.1186/s12866-022-02460-x
  53. EN 12353:2006 Chemical disinfectants and antiseptics – Preservation of test organisms used for the determination of bactericidal, mycobactericidal, sporicidal and fungicidal activity (2006). Brussels: European Committee for Standardization. doi: https://doi.org/10.3403/30143742
  54. Jorgensen, J. H., Turnidge, J. D.; Murray, P. R., Baron, E. J., Jorgensen, J. H., Landry, M. L., Pfaller, M. A. (Eds.) (2007). Susceptibility test methods: dilution and disk diffusion methods. Manual of clinical microbiology. Washington: ASM Press, 1152–1172. doi: https://doi.org/10.1128/9781555817381.ch71
  55. Sarker, M. M., Islam, K. N., Huri, H. Z., Rahman, M., Imam, H., Hosen, M. B. et. al. (2014).Studies of the impact of occupational exposure of pharmaceutical workers on the development of Antimicrobial Drug Resistance. Journal of Occupational Health, 56 (4), 260–270. doi: https://doi.org/10.1539/joh.14-0012-oa
  56. Mao, G., Song, Y., Bartlam, M., Wang, Y. (2018). Long-term effects of residual chlorine on pseudomonas aeruginosa in simulated drinking water fed with low AOC medium. Frontiers in Microbiology, 9. doi: https://doi.org/10.3389/fmicb.2018.00879
  57. Murashevych, B., Girenko, D., Maslak, H., Stepanskyi, D., Abraimova, O., Netronina, O. et. al. (2021).Acute inhalation toxicity of aerosolized electrochemically generated solution of sodium hypochlorite. Inhalation Toxicology, 34 (1-2), 1–13. doi: https://doi.org/10.1080/08958378.2021.2013348
Broad-purpose antimicrobial chlorine-active polymers: suppression of multidrug-resistant microorganisms and microbial penetration resistance

Downloads

Published

2022-10-31

How to Cite

Murashevych, B., Koshova, I., Surmasheva, E., Girenko, D., Chuiko, V., & Stepanskyi, D. (2022). Broad-purpose antimicrobial chlorine-active polymers: suppression of multidrug-resistant microorganisms and microbial penetration resistance. ScienceRise: Pharmaceutical Science, (5 (39), 64–73. https://doi.org/10.15587/2519-4852.2022.266171

Issue

Section

Pharmaceutical Science