Study of factors affecting the in vitro release of ketoprofen from carbomers-based gels

Authors

DOI:

https://doi.org/10.15587/2519-4852.2022.268933

Keywords:

carbomer, gel, liquid, ketoprofen, ethanol, viscosity, rotational correlation time, in vitro release test (IVRT)

Abstract

The aim. To identify some factors affecting the in vitro release of ketoprofen from carbomer-based gels.

Materials and methods. Carbomer-based gels containing ketoprofen as well as a Newtonian liquid without carbomer, which was the dispersion medium of the gel, were studied by rotational viscometry and spin probe method. The flow behaviour and rheological parameters were determined using the rheograms, and the rotational correlation times of the two dissolved spin probes, the molecules of which contain a carboxyl group or an amino group, were determined by EPR spectra. In vitro release tests were performed using vertical diffusion chambers using a validated method. The quantitative determination of ketoprofen in gels, liquid and receptor medium was performed by liquid chromatography, and ethanol was quantified by gas chromatography according to validated procedures. Gels with different brands of carbomers, neutralised with trolamine or trometamol, with different contents of ketoprofen and ethanol, and with pH from 6.0 to 7.0 were studied.

Results. The sol → gel transition due to the neutralisation of the carbomer did not affect the shape and parameters of the EPR spectrum of the spin probe containing a carboxyl group in the molecule (like a carbomer and ketoprofen) in contrast to the probe with an amino group. If the substance dissolved in the gels does not interact with the carbomer, then its molecules/ions rotate rapidly in the liquid medium. This facilitates the release of a such substance from carbomer-based gels. The medicinal product Nobi Gel® gel 2.5 % and Newtonian liquid were equivalent in relation to the in vitro release parameters of ketoprofen from these objects. Сarbomer-based gels, which differed significantly in terms of rheological parameters, were also found to be equivalent in terms of ketoprofen release parameters. The in vitro release of ketoprofen was affected by its concentration and ethanol content in the gel. A change in pH from 6.0 to 7.0 practically did not affect the parameters of in vitro release of ketoprofen from gels.

Conclusions. The formation of a carbomer-based gel did not affect the rotational correlation time of the probe, which did not interact with the carbomer. Parameters of in vitro release of ketoprofen from the gel and Newtonian liquid differed little; these parameters were also little affected by the difference in apparent viscosity of the gels. The in vitro release of ketoprofen depended on its concentration and ethanol content

Author Biographies

Olena Bezugla, State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine

PhD, Senior Researcher, Head of Laboratory

Laboratory of Technology and Analysis of Medicinal Products

Anna Liapunova, State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine

PhD, Researcher

Laboratory of Technology and Analysis of Medicinal Products

Igor Zinchenko, State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine

PhD, Junior Researcher

Laboratory of Technology and Analysis of Medicinal Products

Oleksii Liapunov, State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine

PhD, Researcher

Laboratory of Technology and Analysis of Medicinal Products

Nikolay Lyapunov, State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine

Doctor of Pharmaceutical Sciences, Professor, Leading Researcher

Laboratory of Technology and Analysis of Medicinal Products

Yurij Stolper, State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine

PhD, Senior Researcher

Laboratory of Technology and Analysis of Medicinal Products

References

  1. The European Pharmacopoeia (2022). EDQM. Strasbourg: Council of Europe. Available at: http://pheur.edqm.eu/subhome/11-0
  2. Derzhavna Farmakopeіa Ukraini. Vol. 1 (2015). Kharkiv: Derzhavne pidpryiemstvo «Ukrayinskyi naukovyi farmakopeinyi tsentr yakosti likarskikh zasobiv», 1128.
  3. Kulawik-Pióro, A., Miastkowska, M. (2021). Polymeric Gels and Their Application in the Treatment of Psoriasis Vulgaris: A Review. International Journal of Molecular Sciences, 22 (10), 5124. doi: https://doi.org/10.3390/ijms22105124
  4. Dragicevic, N., Krajisnik, D., Milic, J., Fahr, A., Maibach, H. (2018). Development of hydrophilic gels containing coenzyme Q10-loaded liposomes: characterization, stability and rheology measurements. Drug Development and Industrial Pharmacy, 45 (1), 43–54. doi: https://doi.org/10.1080/03639045.2018.1515220
  5. Ambala, R., & Vemula, S. (2015). Formulation and Characterization of Ketoprofen Emulgels. Journal of Applied Pharmaceutical Science, 5 (7), 112–117. doi: https://doi.org/10.7324/japs.2015.50717
  6. Nagai, N., Iwamae, A., Tanimoto, S., Yoshioka, C., Ito, Y. (2015). Pharmacokinetics and Antiinflammatory Effect of a Novel Gel System Containing Ketoprofen Solid Nanoparticles. Biological and Pharmaceutical Bulletin, 38 (12), 1918–1924. doi: https://doi.org/10.1248/bpb.b15-00567
  7. Herndon, C. M. (2012). Topical Delivery of Nonsteroidal Anti-inflammatory Drugs for Osteoarthritis. Journal of Pain & Palliative Care Pharmacotherapy, 26 (1), 18–23. doi: https://doi.org/10.3109/15360288.2011.653600
  8. Barkin, R. L. (2013). The Pharmacology of Topical Analgesics. Postgraduate Medicine, 125 (1), 7–18. doi: https://doi.org/10.1080/00325481.2013.1110566911
  9. Špaglová, M., Čuchorová, M., Čierna, M., Poništ, S., Bauerová, K. (2021). Microemulsions as Solubilizers and Penetration Enhancers for Minoxidil Release from Gels. Gels, 7 (1), 26. doi: https://doi.org/10.3390/gels7010026
  10. Muro, S. (Ed.) (2016). Drug Delivery Across Physiological Barriers. Pan Stanford Reference, 426. doi: https://doi.org/10.1201/b19907
  11. Alkilani, A., McCrudden, M. T., Donnelly, R. (2015). Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum. Pharmaceutics, 7 (4), 438–470. doi: https://doi.org/10.3390/pharmaceutics7040438
  12. Draft guideline on quality and equivalence of topical products (2018). CHMP/QWP/708282/2018. Available at: www.ema.europa.eu/en/quality-equivalence-topical-products
  13. The United States Pharmacopoeia, 41 – NF 36 (2018). The United States Pharmacopoeial Convention. Rockville. Available at: https://www.worldcat.org/title/united-states-pharmacopeia-2018-usp-41-the-national-formulary-nf-36/oclc/1013752699
  14. Dabbaghi, M., Namjoshi, S., Panchal, B., Grice, J. E., Prakash, S., Roberts, M. S., Mohammed, Y. (2021). Viscoelastic and Deformation Characteristics of Structurally Different Commercial Topical Systems. Pharmaceutics, 13 (9), 1351. doi: https://doi.org/10.3390/pharmaceutics13091351
  15. Miranda, M., Veloso, C., Brown, M., C. Pais, A. A. C., Cardoso, C., Vitorino, C. (2022). Topical bioequivalence: Experimental and regulatory considerations following formulation complexity. International Journal of Pharmaceutics, 620, 121705. doi: https://doi.org/10.1016/j.ijpharm.2022.121705
  16. Ilić, T., Pantelić, I., Savić, S. (2021). The Implications of Regulatory Framework for Topical Semisolid Drug Products: From Critical Quality and Performance Attributes towards Establishing Bioequivalence. Pharmaceutics, 13 (5), 710. doi: https://doi.org/10.3390/pharmaceutics13050710
  17. Sheskey, P. J., Hancock, B. C., Moss, G. P., Goldfarb, D. J. (Eds.) (2020). Handbook of Pharmaceutical Excipients. London: Pharm. Press, 1296.
  18. Formulating Hydroalcoholic Gels with Carbopol® Polymers: Technical Data Sheet (TDS-255) (2009). Lubrizol, 1–7.
  19. Gürol, Z., Hekimoǧlu, S., Demirdamar, R., Şumnu, M. (1996). Percutaneous absorption of ketoprofen. I. In vitro release and percutaneous absorption of ketoprofen from different ointment bases. Pharmaceutica Acta Helvetiae, 71 (3), 205–212. doi: https://doi.org/10.1016/0031-6865(96)00011-8
  20. Kolman, M., Smith, C., Chakrabarty, D., Amin, S. (2021). Rheological stability of carbomer in hydroalcoholic gels: Influence of alcohol type. International Journal of Cosmetic Science, 43 (6), 748–763. doi: https://doi.org/10.1111/ics.12750
  21. Toderescu, C. D., Dinu-Pîrvu, C., Ghica, M. V., Anuța, V., Popa, D. E., Vlaia, L., Lupuliasa, D. (2016). Influence of formulation variables on ketoprofen diffusion profiles from hydroalcoholic gels. Farmacia, 64 (5), 72–78.
  22. Salamanca, C., Barrera-Ocampo, A., Lasso, J., Camacho, N., Yarce, C. (2018). Franz Diffusion Cell Approach for Pre-Formulation Characterisation of Ketoprofen Semi-Solid Dosage Forms. Pharmaceutics, 10 (3), 148. doi: https://doi.org/10.3390/pharmaceutics10030148
  23. Milanowski, B., Wosicka-Frąckowiak, H., Główka, E., Sosnowska, M., Woźny, S., Stachowiak, F. et al. (2021). Optimization and Evaluation of the In Vitro Permeation Parameters of Topical Products with Non-Steroidal Anti-Inflammatory Drugs through Strat-M® Membrane. Pharmaceutics, 13 (8), 1305. doi: https://doi.org/10.3390/pharmaceutics13081305
  24. Lyapunov, A. N., Bezuglaya, E. P., Lyapunov, N. A., Kirilyuk, I. A. (2015). Studies of Carbomer Gels Using Rotational Viscometry and Spin Probes. Pharmaceutical Chemistry Journal, 49 (9), 639–644. doi: https://doi.org/10.1007/s11094-015-1344-3
  25. Derzhavnyi reiestr likarskykh zasobiv Ukrainy. Available at: http://www.drlz.kiev.ua/
  26. Buckingham, R. (Ed.) (2020). Martindale: The Complete Drug Reference. London: Pharmaceutical Press, 4912.
  27. Alkilani, A., McCrudden, M. T., Donnelly, R. (2015). Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum. Pharmaceutics, 7 (4), 438–470. doi: https://doi.org/10.3390/pharmaceutics7040438
  28. Lykhtenshtein, G. I. (1974). Metod spinovykh zondov v molekuliarnoi biologii. Moscow: Nauka, 256.
  29. Kuznecov, A. N. (1976). Metod spinovogo zonda (Osnovy i primenenie). Moscow: Nauka, 210.
  30. Derzhavna Farmakopeіa Ukraini. Dopovnennia 4 (2020). Kharkiv: Derzhavne pidpryiemstvo «Ukrayinskyi naukovyi farmakopeinyi tsentr yakosti likarskikh zasobiv», 600.
  31. Tiffner, K. I., Kanfer, I., Augustin, T., Raml, R., Raney, S. G., Sinner, F. (2018). A comprehensive approach to qualify and validate the essential parameters of an in vitro release test (IVRT) method for acyclovir cream, 5 %. International Journal of Pharmaceutics, 535 (1–2), 217–227. doi: https://doi.org/10.1016/j.ijpharm.2017.09.049
  32. Derzhavna Farmakopeіa Ukraini. Vol. 2 (2014). Kharkiv: Derzhavne pidpryiemstvo «Ukrayinskyi naukovyi farmakopeinyi tsentr yakosti likarskikh zasobiv», 724.
  33. Carbopol® Ultrez 21 Polymer. Technical Data Sheet (TDS-297). (2002). Cleveland: Lubrizol, 4.
  34. Bezuglaya, E., Ivashchenko, H., Lyapunov, N., Zinchenko, I., Liapunova, A., Stolper, Y. et al. (2021). Study of factors affecting the in vitro release of diclofenac sodium from hypromelose-based gels. ScienceRise: Pharmaceutical Science, 5 (33), 12–31. doi: https://doi.org/10.15587/2519-4852.2021.243040
  35. Nonsterile Semisolid Dosage Forms Scale-Up and Postapproval Changes: Chemistry, Manufacturing, and Controls; In Vitro Release Testing and In Vivo Bioequivalence Documentation (1997). Guidance for Industry. – U.S. Department of Health and Human Services; Food and Drug Administration Center for Drug Evaluation and Research (CDER), 37.
  36. Note for Guidance Specifications: Test Procedures and Acceptance Criteria for New Drug Substances and New Drug Products: Chemical Substances (2000). СРМР/ICH/367/96 (ICH Topic Q6A).
  37. Guideline on Excipients in the Dossier for Application for Marketing Authorisation of a Medicinal Product (2007). EMEA/CHMP/QWP/396951/2006.

Downloads

Published

2022-12-30

How to Cite

Bezugla, O., Liapunova, A., Zinchenko, I., Liapunov, O., Lyapunov, N., & Stolper, Y. (2022). Study of factors affecting the in vitro release of ketoprofen from carbomers-based gels. ScienceRise: Pharmaceutical Science, (6(40), 4–20. https://doi.org/10.15587/2519-4852.2022.268933

Issue

Section

Pharmaceutical Science