The study of the natural substances obtained from the poplar buds and their use for protection against the action of ionizing radiation

Authors

DOI:

https://doi.org/10.15587/2519-4852.2023.271837

Keywords:

Populus balzamifera, extraction, flavonoids, UV-VIS spectroscopy, radioprotectors, γ-radiation, HPLC, HPLC-MS, poplar buds, ethanol

Abstract

Currently, natural plant extracts, which include biologically active substances, are increasingly used to produce medicines and cosmetics.

In connection with the dangers of a radioecological crisis, special attention is paid to finding ways to protect against the effects of chronic exposure to low-intensity ionizing radiation in natural conditions. Currently, there is no ideal and safe radioprotective agent available, and we are seeing a great effort to find these agents from natural sources.

Poplar extract is possible for use as a radioprotective shield from γ-radiation. Samples of protective screens were made from poplar extract on paper and showed a significant radioprotective effect. Phenolic compounds and flavonoids are widely present in plants as a second metabolite and are considered for research depending on their benefits for human health, healing and preventing many disorders. The main biologically active properties of flavonoids include antioxidant, anti-inflammatory, antitumor, rejuvenating, antibacterial and viral, neuroprotective and radioprotective action.

The aim of this work wasthe study of Flavonoids in an extract obtained from poplar buds and the possibility of their use for protection against radiation.

Materials and methods. The object of research is the vegetative organs of poplar (buds). In the process of work, experimental studies were carried out on the extraction and separation of natural compounds, identification of flavonoids, and study of the chemical composition of biologically active complexes of poplar and preparations based on them.

Research results. Data from these studies provide the identification of flavonoids by spectroscopy and quantification of flavonoids in poplar bud extract and can contribute to the optimization of radioprotection procedures. The main components found in the poplar buds dry extract are 2',6'-dihydroxy-4'-methoxychalcone – are 2',6'-dihydroxy-4'-methoxychalcone – 2,67 %, 3,4-dihydro-2',6'-dihydroxy-4'-methoxychalcone – 2,33 %, pinobaxin -1,91 %, chrysin – 0,76 %, pinostrobin – 0,04 %, pinocembrin – 0,61 %, tectochrysin- 0,54 % and galangin – 0,18 % of dry material. The results showed that the power of the penetrating radiation decreases with increasing the thickness of the protective screen. The power of penetrating radiation decreased from 78 % at the layer of 0.5 mm to 10 % at 3 mm layer thickness. Further increasing the thickness of the protective screen (> 3 mm), doesn’t affect the dose rate.

Conclusions. The composition of the poplar buds' ethanol extract was investigated. Samples of protective screens made on the basis of poplar extract on paper showed a significant radioprotective effect on low-intensity ionizing radiation

Author Biographies

Anna Mechshanova, Non-profit limited company "Manash Kozybayev North Kazakhstan University"

Doctoral Student

Department of "Chemistry and Chemical Technologies"

Vladilen Polyakov, Non-profit limited company "Manash Kozybayev North Kazakhstan University"

Doctor of Chemical Sciences, Professor

Department of "Chemistry and Chemical Technologies"

Temenuzhka Radoykova, University of Chemical Technology and Metallurgy

PhD, Assistant Professor

Department of Analytical Chemistry

References

  1. Lozhkina, G. A., Isaeva, E. V., Riazanova, T. V. (2007). Vliianie razlichnykh faktorov na protcess ekstraktcii pochek topolia balzamicheskogo. Khimiia rastitelnogo syria, 2, 51–54.
  2. Castro, S. L. (2006). Propolis: Biological and Pharmacological Activities. Therapeutic Uses of This Bee-product. Annual Review of Biomedical Sciences, 3, 49–83. doi: https://doi.org/10.5016/1806-8774.2001v3p49
  3. Таkibayeva, А. Т., Amirchan, A. A., Kalkenova, A. T., Kulakov, I. V. (2021). Flavonoids of populus balsamifera plants and their biological activity. News. Series chemistry and technology, 1 (445), 147–150. doi: https://doi.org/10.32014/2021.2518-1491.19
  4. El-Enshasy, H. A. (2007). Filamentous Fungal Cultures – Process Characteristics, Products, and Applications. Bioprocessing for Value-Added Products from Renewable Resources, 225–261. doi: https://doi.org/10.1016/b978-044452114-9/50010-4
  5. Meletiadis, J., Meis, J. F. G. M., Mouton, J. W., Verweij, P. E. (2001). Analysis of Growth Characteristics of Filamentous Fungi in Different Nutrient Media. Journal of Clinical Microbiology, 39 (2), 478–484. doi: https://doi.org/10.1128/jcm.39.2.478-484.2001
  6. Isaeva, E. V., Lozhkina, G. A., Litovka, Yu. A., Ryazanova, T. V. (2008). Biologicheskaia aktivnost ekstraktov i efirnykh masel pochek topolia balzamicheskogo Krasnoiarskogo kraia. Khimiia rastitelnogo syria, 1, 67–72.
  7. Stanciauskaite, M., Marksa, M., Liaudanskas, M., Ivanauskas, L., Ivaskiene, M., Ramanauskiene, K. (2021). Extracts of Poplar Buds (Populus balsamifera L., Populus nigra L.) and Lithuanian Propolis: Comparison of Their Composition and Biological Activities. Plants, 10 (5), 828. doi: https://doi.org/10.3390/plants10050828
  8. Bhekti Rahimah, S., Firmansyah, A., Maharani, W., Andriane, Y., Santosa, D., Romadhona, N. (2021). Active compound test: ethanolic extract of White Oyster Mushroom (Pleurotus ostreatus) Using HPLC and LC-MS. F1000Research, 10, 1233. doi: https://doi.org/10.12688/f1000research.73693.1
  9. Bruneton, J.; Bone, K., Mills, S. (2012). Principles of herbal pharmacology. Principles and Practice of Phytotherapy: Modern Herbal Medicine. Churchill Livingstone, Elsevier, 45–82.
  10. Nenkova, S., Radoykova, T., Stanulov, K. (2011). Preparation and antioxidant properties of biomass low molecular phenolic compounds. Journal of the University of Chemical Technology & Metallurgy, 46 (2), 109–120.
  11. Devappa, R. K., Rakshit, S. K., Dekker, R. F. H. (2015). Forest biorefinery: Potential of poplar phytochemicals as value-added co-products. Biotechnology Advances, 33 (6), 681–716. doi: https://doi.org/10.1016/j.biotechadv.2015.02.012
  12. Martos, I., Cossentini, M., Ferreres, F., Tomás-Barberán, F. A. (1997). Flavonoid Composition of Tunisian Honeys and Propolis. Journal of Agricultural and Food Chemistry, 45 (8), 2824–2829. doi: https://doi.org/10.1021/jf9609284
  13. Tyśkiewicz, K., Konkol, M., Kowalski, R., Rój, E., Warmiński, K., Krzyżaniak, M., Gil, Ł., Stolarski, M. J. (2019). Characterization of bioactive compounds in the biomass of black locust, poplar and willow. Trees, 33 (5), 1235–1263. doi: https://doi.org/10.1007/s00468-019-01837-2
  14. Altynbekova, A. K., Altynbekov, K. D., Zholdybaev, S. S. (2016). Primenenie fitopreparata «Topolin s ekstraktom romashki» v kompleksnom lechenii boleznei parodonta. Farmatcevticheskii biulleten, 3-4, 93–101.
  15. Citrin, D., Cotrim, A. P., Hyodo, F., Baum, B. J., Krishna, M. C., Mitchell, J. B. (2010). Radioprotectors and Mitigators of Radiation-Induced Normal Tissue Injury. The Oncologist, 15 (4), 360–371. doi: https://doi.org/10.1634/theoncologist.2009-s104
  16. Satyamitra, M., Mantena, S., Nair, C. K. K., Chandna, S., Dwarakanath, B. S. (2014). The Antioxidant Flavonoids, Orientin and Vicenin Enhance Repair of Radiation-Induced Damage. Scholarena Journal of Pharmacy and Pharmacology, 1 (1). doi: https://doi.org/10.18875/2375-2262.1.105
  17. Hoensch, H. P., Oertel, R. (2015). The value of flavonoids for the human nutrition: Short review and perspectives. Clinical Nutrition Experimental, 3, 8–14. doi: https://doi.org/10.1016/j.yclnex.2015.09.001
  18. Sarbu, L. G., Bahrin, L. G., Babii, C., Stefan, M., Birsa, M. L. (2019). Synthetic flavonoids with antimicrobial activity: a review. Journal of Applied Microbiology, 127 (5), 1282–1290. doi: https://doi.org/10.1111/jam.14271
  19. Ping, X., Junqing, J., Junfeng, J., Enjin, J. (2011). Radioprotective effects of troxerutin against gamma irradiation in V79 cells and mice. Asian Pacific Journal of Cancer Prevention, 12 (10), 2593–2596.
  20. Havsteen, B. H. (2002). The biochemistry and medical significance of the flavonoids. Pharmacology & Therapeutics, 96 (2-3), 67–202. doi: https://doi.org/10.1016/s0163-7258(02)00298-x
  21. Kuzmanova, V. S., Denev, P., Krachanova, M., Surleva, A., Belcheva, A. (2014). Composition and antioxidant activity of aronia melanocarpa fruit juice. Varna Medical Forum, 3, 1
  22. Lesovaya, J. S., Pisarev D. I., Novikov, O. O., Romanova, T. A. (2010). Development of a method for determining the determination of flavonoids in the herb of the common mantle Alchemilla vulgaris Lsl. Actual Problems of Medicine, 12 (22 (93)), 145–149.
  23. Raudsepp, P. (2021). Polyphenolic composition of rhubarb (Rheum rhaponticum L.) and blackcurrant (Ribes nigrum L.), antibacterial and free radical scavenging properties of these plants in comparison with some other food plants. Available at: https://dspace.emu.ee/xmlui/handle/10492/7064
  24. Polyakov, V. V. (1999). Maslo topolia balzamicheskogo (Populus balzamifera) i proizvodnye miritcetina, obladaiushchie biologicheskoi aktivnostiu. Karaganda.
  25. Smagunova, A. N., Karpukova, O. M. (2008). Methods of mathematical statistics in analytical chemistry. Irkutsk: Irkutsk. gos. univ.
  26. Markham, K. R. (1982). Techniques of flavonoid identification. London: Academic press.
  27. Markham, Ken. R., Mabry, Tom. J. (1975). Ultraviolet-Visible and Proton Magnetic Resonance Spectroscopy of Flavonoids. The Flavonoids, 45–77. doi: https://doi.org/10.1007/978-1-4899-2909-9_2
  28. Okińczyc, P., Widelski, J., Szperlik, J., Żuk, M., Mroczek, T., Skalicka-Woźniak, K. et al. (2021). Impact of Plant Origin on Eurasian Propolis on Phenolic Profile and Classical Antioxidant Activity. Biomolecules, 11 (1), 68. doi: https://doi.org/10.3390/biom11010068
  29. Isaeva, E. V., Lozhkina, G. A., Ryazanova, T. V. (2009). Issledovanie spirtovogo ekstrakta pochek topolia balzamicheskogo. Khimiia rastitelnogo syria, 1, 83–88.
  30. Braslavskii, V. B., Kurkin, V. A., Bakulin, V. T. (1993). Sravnitelnoe khimicheskoe issledovanie nekotorykh vidov i gibridnykh form Populus L., kultiviruemykh v Sibiri. Rastitelnye resursy, 29 (4), 77–81.
  31. Kurkin, V. A., Braslavskii, V. B., Zapesochnaia, G. G. (1993). Issledovanie khimicheskogo sostava pochek Populus balsamifera L. metodom VEZhKh. Rastitelnye resursy, 29 (3), 85–90.
  32. Adekenov, S. M., Baysarov, G. M., Khabarov, I. A., Polyakov, V. V. (2020). Flavonoids of populus balsamifera l. buds and methods for their isolation. Chemistry of Plant Raw Material, 2, 181–188. doi: https://doi.org/10.14258/jcprm.2020027602
  33. Shimoi, K., Masuda, S., Shen, B., Furugori, M., Kinae, N. (1996). Radioprotective effects of antioxidative plant flavonoids in mice. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 350 (1), 153–161. doi: https://doi.org/10.1016/0027-5107(95)00116-6
  34. Yahyapour, R., Shabeeb, D., Cheki, M., Musa, A. E., Farhood, B., Rezaeyan, A. et al. (2018). Radiation Protection and Mitigation by Natural Antioxidants and Flavonoids: Implications to Radiotherapy and Radiation Disasters. Current Molecular Pharmacology, 11 (4), 285–304. doi: https://doi.org/10.2174/1874467211666180619125653
  35. Barquinero, J. F., Almonacid, M., Montoro, A., Sebastià, N., Verdu, G., Sahuquillo, V. et al. (2011). Concentration-dependent protection by ethanol extract of propolis against γ-ray-induced chromosome damage in human blood lymphocytes. Evidence-based complementary and alternative medicine, 2011. doi: https://doi.org/10.1155/2011/174853
  36. Braslavsky, V. B., Kurkin, V. A. (2011). Study of the electronic spectra of poplar and propolis flavonoids. Medical Almanac, 2, 140–144.
The study of the natural substances obtained from the poplar buds and their use for protection against the action of ionizing radiation

Downloads

Published

2023-06-30

How to Cite

Mechshanova, A., Polyakov, V., & Radoykova, T. (2023). The study of the natural substances obtained from the poplar buds and their use for protection against the action of ionizing radiation. ScienceRise: Pharmaceutical Science, (3(43), 79–86. https://doi.org/10.15587/2519-4852.2023.271837

Issue

Section

Pharmaceutical Science