Immunohistochemical neuroinflammatory markers in the hippocampus of PTZ-kindled rats under conditions of rapamycin and axitinib treatment

Authors

DOI:

https://doi.org/10.15587/2519-4852.2023.274703

Keywords:

experimental epileptic syndrome, kindling, pentylenetetrazol, rapamycin, axitinib, HIF-1α, TNF-α, NF-kB, mTOR, tyrosine kinase B

Abstract

The aim of the study is to determine the level of HIF-1α, TNF-α, and NF-kB in the hippocampus of kindled rats treated with rapamycin and axitinib.

Materials and methods. Kindling was produced in 29 rats by administration of three-week pentylenetetrazole (PTZ, 35.0 mg/kg, i.p.). Treatment with rapamycin (0.5 mg/kg, i.p.) and axitinib (2.5 mg/kg, i.p.) was performed for ten days in fully kindled rats. The avidin-biotin-peroxidase method was used for hippocampal slice staining. For negative control, staining was performed using only secondary antibodies.

Results. The HIF-1α expression increased in kindled rats raised by 1.77 times compared to the control (p<0.001). Axitinib treatment resulted in of HIF-1α level of 16.7 % (p<0.05) compared with kindled animals, while combined treatment with rapamycin and axitinib reduced HIF-1α by 33.8 % (p<0.01). In kindled rats, TNF-α expression was 3.74 times greater than in control (p<0.001). Rapamycin treatment reduced TNF-α by 31.0 % (p<0.01). Axitinib treatment caused a reduction of TNF-α by 21.1 % (p<0.05). Combined treatment with rapamycin and axitinib reduced TNF-α by 48.0 % (p<0.001) but still exceeded the TNF-α in control by 1.95 times (p<0.01). NF-kB level in kindled rats exceeded the control by three times (p<0.001). Rapamycin caused a reduction of 19.3 % (p>0.05), while axitinib – by 26.5 % (p<0.05) compared with kindled rats. Combined treatment with rapamycin and axitinib resulted in NF-kB reduction by 56.7 % compared with kindled rats (p<0.001). 

Conclusions. PTZ-kindling resulted in an increase in the immunoreactivity of HIF-1α, TNF-α, and NF-kB in the hippocampus. Combined treatment with rapamycin and axitinib engendered prevention of generalized seizures and normalized the level of HIF-1α and NF-kB with a significant reduction of TNF-α. Effects of treatment favours of synergy action of rapamycin and axitinib

Author Biographies

Olesya Poshyvak, Danylo Halytsky Lviv National Medical University

PhD, Associate Professor

Department of Pharmacology

Oleh Pinyazhko, Danylo Halytsky Lviv National Medical University; University of Information Technology and Management in Rzeszów

Doctor of Medical Sciences, Professor

Department of Pharmacology

Department of Civilization Diseases and Regenerative Medicine

Leonid Godlevsky, Odesa National Medical University

Doctor of Medical Sciences, Professor

Department of Biophysics, Informatics and Medical Devices

Mykhailo Pervak, Odesa National Medical University

PhD, Associate Professor

Department of Simulation Medical Technologies

Olha Yehorenko, Odesa National Medical University

Assistant

Department of Simulation Medical Technologies

Zuleyha Doganyigit, Yozgat Bozok University

PhD, Professor (Associate)

Department of Histology and Embryology

Asli Okan, Yozgat Bozok University

(PhD) Professor (Assistant)

Department of Histology and Embryology

Enes Akyuz, University of Health Sciences

PhD, Professor (Associate)

Department of Biophysics

Suliman N. A. Hathal, Danylo Halytsky Lviv National Medical University

Postgraduate student

Department of Pharmacology

Artem Liashenko, Odesa National Medical University

PhD, Asociate Professor

Department of Biophysics, Informatics and Medical Devices

References

  1. Stafstrom, C. E., Carmant, L. (2015). Seizures and Epilepsy: An Overview for Neuroscientists. Cold Spring Harbor Perspectives in Medicine, 5 (6), a022426. doi: https://doi.org/10.1101/cshperspect.a022426
  2. Devinsky, O., Vezzani, A., O’Brien, T. J., Jette, N., Scheffer, I. E., de Curtis, M., Perucca, P. (2018). Epilepsy. Nature Reviews Disease Primers, 4 (1). doi: https://doi.org/10.1038/nrdp.2018.24
  3. Löscher, W., Potschka, H., Sisodiya, S. M., Vezzani, A. (2020). Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacological Reviews, 72 (3), 606–638. doi: https://doi.org/10.1124/pr.120.019539
  4. Aronica, E., Mühlebner, A.; Kovacs, G., Alafuzoff, I. (Eds.) (2017). Neuropathology of epilepsy. Handbook Of Clinical Neurology. Elsevier, 193–216. doi: doi: https://doi.org/10.1016/B978-0-12-802395-2.00015-8
  5. Thijs, R. D., Surges, R., O’Brien, T. J., Sander, J. W. (2019). Epilepsy in adults. The Lancet, 393 (10172), 689–701. doi: https://doi.org/10.1016/s0140-6736(18)32596-0
  6. Poshyvak, O. B., Pinyazhko, O. R., Godlevsky, L. S. (2021). Axitinib displays antiseizure activity on pentylenetetrazol – induced kindling mode. Pharmacologyonline, 1, 200–213. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105486087&partnerID=40&md5=4df7979dc63ceabf85e91039b389a979
  7. Vezzani, A. (2020). Brain Inflammation and Seizures: Evolving Concepts and New Findings in the Last 2 Decades. Epilepsy Currents, 20 (6_suppl), 40S–43S. doi: https://doi.org/10.1177/1535759720948900
  8. Kryzhanovskiĭ, G. N., Shandra, A. A., Godlevskiĭ, L. S., Mazarati, A. M. (1992). The antiepileptic system. Uspehi fiziologičeskih nauk, 23 (3), 53–77. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-17144462576&partnerID=MN8TOARS
  9. Kresyun, N. V., Godlevskii, L. S. (2014). Superoxide Dismutase and Catalase Activities in the Retina during Experimental Diabetes and Electric Stimulation of the Paleocerebellar Cortex. Bulletin of Experimental Biology and Medicine, 158 (2), 206–208. doi: https://doi.org/10.1007/s10517-014-2723-6
  10. Selvarani, R., Mohammed, S., Richardson, A. (2020). Effect of rapamycin on aging and age-related diseases – past and future. GeroScience, 43 (3), 1135–1158. doi: https://doi.org/10.1007/s11357-020-00274-1
  11. Cakar, B., Göker, E.; Aydiner, A., Igci, A., Soran, A. (Eds.) (2019). Tyrosine kinase inhibitors. Breast disease. Cham Springer, 529–539. doi: https://doi.org/10.1007/978-3-030-16792-9_35
  12. El Kayal, W., Severina, H., Tsyvunin, V., Zalevskyi, S., Shtrygol’, S., Vlasov, S. et al. (2022). Synthesis and anticonvulsant activity evaluation of n-[(2,4-dichlorophenyl)methyl]-2-(2,4-dioxo-1h-quinazolin-3-yl)acetamide novel 1-benzylsubstituted derivatives. ScienceRise: Pharmaceutical Science, 1 (35), 58–69. doi: https://doi.org/10.15587/2519-4852.2022.253554
  13. Tsyvunin, V., Shtrygol’, S., Havrylov, I., Shtrygol’, D., Reus, A. (2022). SGLT-2 inhibitors as potential anticonvulsants: empagliflozin, but not dapagliflozin, renders a pronounced effect and potentiates the sodium valproate activity in pentylenetetrazole-induced seizures. ScienceRise: Pharmaceutical Science, 5 (39), 83–90. doi: https://doi.org/10.15587/2519-4852.2022.266065
  14. Singh, T., Mishra, A., & Goel, R. K. (2021). PTZ kindling model for epileptogenesis, refractory epilepsy, and associated comorbidities: relevance and reliability. Metabolic Brain Disease, 36 (7), 1573–1590. doi: https://doi.org/10.1007/s11011-021-00823-3
  15. Wang, K., Liu, Y., Shi, Y., Yan, M., Rengarajan, T., Feng, X. (2021). Amomum tsaoko fruit extract exerts anticonvulsant effects through suppression of oxidative stress and neuroinflammation in a pentylenetetrazol kindling model of epilepsy in mice. Saudi Journal of Biological Sciences, 28 (8), 4247–4254. doi: https://doi.org/10.1016/j.sjbs.2021.06.007
  16. Godlevsky, L. S., Muratova, T. N., Kresyun, N. V., van Luijtelaar, G., Coenen, A. M. L. (2014). Anxiolytic and antidepressive effects of electric stimulation of the paleocerebellar cortex in pentylenetetrazol kindled rats. Acta Neurobiologiae Experimentale (Wars.), 74 (4), 456–464. Available at: http://www.ane.pl/pdf/7443.pdf
  17. Akyüz, E., Doğanyiğit, Z., Paudel, Y. N., Kaymak, E., Yilmaz, S., Uner, A., Shaikh, Mohd. F. (2020). Increased ACh-Associated Immunoreactivity in Autonomic Centers in PTZ Kindling Model of Epilepsy. Biomedicines, 8 (5), 113. https://doi.org/10.3390/biomedicines8050113
  18. Doğanyiğit, Z., Okan, A., Kaymak, E., Pandır, D., Silici, S. (2020). Investigation of protective effects of apilarnil against lipopolysaccharide induced liver injury in rats via TLR 4/ HMGB-1/ NF-κB pathway. Biomedicine & Pharmacotherapy, 125, 109967. doi: https://doi.org/10.1016/j.biopha.2020.109967
  19. Crowe, A., Yue, W. (2019). Semi-quantitative Determination of Protein Expression Using Immunohistochemistry Staining and Analysis: An Integrated Protocol. Bio-Protocol, 9 (24). doi: https://doi.org/10.21769/bioprotoc.3465
  20. Ramamoorthy, P., Xu, G., Shi, H. (2018). Expression of Hypoxia Inducible Factor 1alpha Is Protein Kinase A-dependent in Primary Cortical Astrocytes Exposed to Severe Hypoxia. Neurochemical Research, 44 (1), 258–268. doi: https://doi.org/10.1007/s11064-018-2516-9
  21. Zhou, F., Guan, L. B., Yu, P., Wang, X. D., Hu, Y. Y. (2016). Regulation of hypoxia-inducible factor-1α, regulated in development and DNA damage response-1 and mammalian target of rapamycin in human placental BeWo cells under hypoxia. Placenta, 45, 24–31. doi: https://doi.org/10.1016/j.placenta.2016.07.003
  22. Hu, Y., Zhou, H., Zhang, H., Sui, Y., Zhang, Z., Zou, Y. et al. (2022). The neuroprotective effect of dexmedetomidine and its mechanism. Frontiers in Pharmacology, 13. doi: https://doi.org/10.3389/fphar.2022.965661
  23. Wei, J., Jiang, H., Gao, H., Wang, G. (2016). Blocking Mammalian Target of Rapamycin (mTOR) Attenuates HIF-1α Pathways Engaged-Vascular Endothelial Growth Factor (VEGF) in Diabetic Retinopathy. Cellular Physiology and Biochemistry, 40 (6), 1570–1577. doi: https://doi.org/10.1159/000453207
  24. Lu, S., Shih, J.-Y., Jang, T.-W., Liam, C.-K., Yu, Y. (2021). Afatinib as First-Line Treatment in Asian Patients with EGFR Mutation-Positive NSCLC: A Narrative Review of Real-World Evidence. Advances in Therapy, 38 (5), 2038–2053. doi: https://doi.org/10.1007/s12325-021-01696-9
  25. Pagnuzzi-Boncompagni, M., Picco, V., Vial, V., Planas-Bielsa, V., Vandenberghe, A., Daubon, T. et al. (2021). Antiangiogenic Compound Axitinib Demonstrates Low Toxicity and Antitumoral Effects against Medulloblastoma. Cancers, 14 (1), 70. doi: https://doi.org/10.3390/cancers14010070
  26. Poshyvak, O. B., Pinyazhko, O. R., Godlevsky, L. S. (2021). Oxidative stress suppression contributes to antiseizure action of axitinib and rapamycin in pentylenetetrazol-induced kindling. The Ukrainian Biochemical Journal, 93 (2), 53–60. doi: https://doi.org/10.15407/ubj93.02.053
  27. Liu, Y., Li, X., Jin, A. (2019). Rapamycin Inhibits Nf-ΚB Activation by Autophagy to Reduce Catabolism in Human Chondrocytes. Journal of Investigative Surgery, 33 (9), 861–873. doi: https://doi.org/10.1080/08941939.2019.1574321
  28. Ni, Z., Li, H., Mu, D., Hou, J., Liu, X., Tang, S., Zheng, S. (2022). Rapamycin Alleviates 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis through Autophagy Induction and NF-κB Pathway Inhibition in Mice. Mediators of Inflammation, 2022, 1–12. doi: https://doi.org/10.1155/2022/2923216
  29. Bärnthaler, T., Jandl, K., Sill, H., Uhl, B., Schreiber, Y., Grill, M. (2019). Imatinib stimulates prostaglandin E2 and attenuates cytokine release via EP4 receptor activation. Journal of Allergy and Clinical Immunology, 143 (2), 794–797.e10. doi: https://doi.org/10.1016/j.jaci.2018.09.030
  30. Lin, Y.-Z., Shen, Y.-C., Wu, W.-R., Wang, W.-J., Wang, Y.-L., Lin, C.-Y. et al. (2021). Imatinib (STI571) Inhibits the Expression of Angiotensin-Converting Enzyme 2 and Cell Entry of the SARS-CoV-2-Derived Pseudotyped Viral Particles. International Journal of Molecular Sciences, 22 (13), 6938. doi: https://doi.org/10.3390/ijms22136938
  31. Pinto, A., Jahn, A., Immohr, M. B., Jenke, A., Döhrn, L., Kornfeld, M. et al. (2016). Modulation of Immunologic Response by Preventive Everolimus Application in a Rat CPB Model. Inflammation, 39 (5), 1771–1782. doi: https://doi.org/10.1007/s10753-016-0412-5
  32. Park, J.-W., Jeon, Y.-J., Lee, J.-C., Ahn, S.-R., Ha, S.-W., Bang, S.-Y. et al. (2012). Destabilization of TNF-α mRNA by Rapamycin. Biomolecules and Therapeutics, 20 (1), 43–49. doi: https://doi.org/10.4062/biomolther.2012.20.1.043
  33. Dai, J., Jiang, C., Chen, H., Chai, Y. (2019). Rapamycin Attenuates High Glucose-Induced Inflammation Through Modulation of mTOR/NF-κB Pathways in Macrophages. Frontiers in Pharmacology, 10. doi: https://doi.org/10.3389/fphar.2019.01292
  34. Bali, A., Arora, K., Hanifa, M., Jaggi, A. S. (2022). Exploring the pain attenuating potential of imatinib in chronic constriction injury model of neuropathic pain. Journal of Neuroscience and Neurological Surgery, 12 (1).
  35. AlAsfoor, S., Rohm, T. V., Bosch, A. J. T., Dervos, T., Calabrese, D., Matter, M. S. et al. (2018). Imatinib reduces non-alcoholic fatty liver disease in obese mice by targeting inflammatory and lipogenic pathways in macrophages and liver. Scientific Reports, 8 (1). doi: https://doi.org/10.1038/s41598-018-32853-w
  36. Chen, L., Hu, Y., Wang, S., Cao, K., Mai, W., Sha, W. et al. (2022). mTOR–neuropeptide Y signaling sensitizes nociceptors to drive neuropathic pain. JCI Insight, 7 (22). doi: https://doi.org/10.1172/jci.insight.159247
  37. Godlevsky, L. S., Shandra, A. A., Mikhaleva, I. I., Vastyanov, R. S., Mazarati, A. M. (1995). Seizure-protecting effects of kyotorphin and related peptides in an animal model of epilepsy. Brain Research Bulletin, 37 (3), 223–226. doi: https://doi.org/10.1016/0361-9230(94)00274-5
  38. D’Ignazio, L., Bandarra, D., Rocha, S. (2015). NF-κB and HIF crosstalk in immune responses. FEBS Journal, 283 (3), 413–424. Portico. https://doi.org/10.1111/febs.13578
  39. D’Ignazio, L., Shakir, D., Batie, M., Muller, H. A., Rocha, S. (2020). HIF-1β Positively Regulates NF-κB Activity via Direct Control of TRAF6. International Journal of Molecular Sciences, 21 (8), 3000. doi: https://doi.org/10.3390/ijms21083000
  40. Shi, J.-H., Sun, S.-C. (2018). Tumor Necrosis Factor Receptor-Associated Factor Regulation of Nuclear Factor κB and Mitogen-Activated Protein Kinase Pathways. Frontiers in Immunology, 9. doi: https://doi.org/10.3389/fimmu.2018.01849
  41. Mussbacher, M., Salzmann, M., Brostjan, C., Hoesel, B., Schoergenhofer, C., Datler, H. et al. (2019). Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Frontiers in Immunology, 10. doi: https://doi.org/10.3389/fimmu.2019.00085
  42. Malkov, M. I., Lee, C. T., Taylor, C. T. (2021). Regulation of the Hypoxia-Inducible Factor (HIF) by Pro-Inflammatory Cytokines. Cells, 10 (9), 2340. doi: https://doi.org/10.3390/cells10092340
  43. Liu, T., Zhang, L., Joo, D., Sun, S.-C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2 (1). doi: https://doi.org/10.1038/sigtrans.2017.23

Downloads

Published

2023-02-28

How to Cite

Poshyvak, O., Pinyazhko, O., Godlevsky, L., Pervak, M., Yehorenko, O., Doganyigit, Z., Okan, A., Akyuz, E., Hathal, S. N. A., & Liashenko, A. (2023). Immunohistochemical neuroinflammatory markers in the hippocampus of PTZ-kindled rats under conditions of rapamycin and axitinib treatment. ScienceRise: Pharmaceutical Science, (1(41), 23–31. https://doi.org/10.15587/2519-4852.2023.274703

Issue

Section

Pharmaceutical Science