Immunohistochemical neuroinflammatory markers in the hippocampus of PTZ-kindled rats under conditions of rapamycin and axitinib treatment
DOI:
https://doi.org/10.15587/2519-4852.2023.274703Keywords:
experimental epileptic syndrome, kindling, pentylenetetrazol, rapamycin, axitinib, HIF-1α, TNF-α, NF-kB, mTOR, tyrosine kinase BAbstract
The aim of the study is to determine the level of HIF-1α, TNF-α, and NF-kB in the hippocampus of kindled rats treated with rapamycin and axitinib.
Materials and methods. Kindling was produced in 29 rats by administration of three-week pentylenetetrazole (PTZ, 35.0 mg/kg, i.p.). Treatment with rapamycin (0.5 mg/kg, i.p.) and axitinib (2.5 mg/kg, i.p.) was performed for ten days in fully kindled rats. The avidin-biotin-peroxidase method was used for hippocampal slice staining. For negative control, staining was performed using only secondary antibodies.
Results. The HIF-1α expression increased in kindled rats raised by 1.77 times compared to the control (p<0.001). Axitinib treatment resulted in of HIF-1α level of 16.7 % (p<0.05) compared with kindled animals, while combined treatment with rapamycin and axitinib reduced HIF-1α by 33.8 % (p<0.01). In kindled rats, TNF-α expression was 3.74 times greater than in control (p<0.001). Rapamycin treatment reduced TNF-α by 31.0 % (p<0.01). Axitinib treatment caused a reduction of TNF-α by 21.1 % (p<0.05). Combined treatment with rapamycin and axitinib reduced TNF-α by 48.0 % (p<0.001) but still exceeded the TNF-α in control by 1.95 times (p<0.01). NF-kB level in kindled rats exceeded the control by three times (p<0.001). Rapamycin caused a reduction of 19.3 % (p>0.05), while axitinib – by 26.5 % (p<0.05) compared with kindled rats. Combined treatment with rapamycin and axitinib resulted in NF-kB reduction by 56.7 % compared with kindled rats (p<0.001).
Conclusions. PTZ-kindling resulted in an increase in the immunoreactivity of HIF-1α, TNF-α, and NF-kB in the hippocampus. Combined treatment with rapamycin and axitinib engendered prevention of generalized seizures and normalized the level of HIF-1α and NF-kB with a significant reduction of TNF-α. Effects of treatment favours of synergy action of rapamycin and axitinib
References
- Stafstrom, C. E., Carmant, L. (2015). Seizures and Epilepsy: An Overview for Neuroscientists. Cold Spring Harbor Perspectives in Medicine, 5 (6), a022426. doi: https://doi.org/10.1101/cshperspect.a022426
- Devinsky, O., Vezzani, A., O’Brien, T. J., Jette, N., Scheffer, I. E., de Curtis, M., Perucca, P. (2018). Epilepsy. Nature Reviews Disease Primers, 4 (1). doi: https://doi.org/10.1038/nrdp.2018.24
- Löscher, W., Potschka, H., Sisodiya, S. M., Vezzani, A. (2020). Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacological Reviews, 72 (3), 606–638. doi: https://doi.org/10.1124/pr.120.019539
- Aronica, E., Mühlebner, A.; Kovacs, G., Alafuzoff, I. (Eds.) (2017). Neuropathology of epilepsy. Handbook Of Clinical Neurology. Elsevier, 193–216. doi: doi: https://doi.org/10.1016/B978-0-12-802395-2.00015-8
- Thijs, R. D., Surges, R., O’Brien, T. J., Sander, J. W. (2019). Epilepsy in adults. The Lancet, 393 (10172), 689–701. doi: https://doi.org/10.1016/s0140-6736(18)32596-0
- Poshyvak, O. B., Pinyazhko, O. R., Godlevsky, L. S. (2021). Axitinib displays antiseizure activity on pentylenetetrazol – induced kindling mode. Pharmacologyonline, 1, 200–213. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105486087&partnerID=40&md5=4df7979dc63ceabf85e91039b389a979
- Vezzani, A. (2020). Brain Inflammation and Seizures: Evolving Concepts and New Findings in the Last 2 Decades. Epilepsy Currents, 20 (6_suppl), 40S–43S. doi: https://doi.org/10.1177/1535759720948900
- Kryzhanovskiĭ, G. N., Shandra, A. A., Godlevskiĭ, L. S., Mazarati, A. M. (1992). The antiepileptic system. Uspehi fiziologičeskih nauk, 23 (3), 53–77. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-17144462576&partnerID=MN8TOARS
- Kresyun, N. V., Godlevskii, L. S. (2014). Superoxide Dismutase and Catalase Activities in the Retina during Experimental Diabetes and Electric Stimulation of the Paleocerebellar Cortex. Bulletin of Experimental Biology and Medicine, 158 (2), 206–208. doi: https://doi.org/10.1007/s10517-014-2723-6
- Selvarani, R., Mohammed, S., Richardson, A. (2020). Effect of rapamycin on aging and age-related diseases – past and future. GeroScience, 43 (3), 1135–1158. doi: https://doi.org/10.1007/s11357-020-00274-1
- Cakar, B., Göker, E.; Aydiner, A., Igci, A., Soran, A. (Eds.) (2019). Tyrosine kinase inhibitors. Breast disease. Cham Springer, 529–539. doi: https://doi.org/10.1007/978-3-030-16792-9_35
- El Kayal, W., Severina, H., Tsyvunin, V., Zalevskyi, S., Shtrygol’, S., Vlasov, S. et al. (2022). Synthesis and anticonvulsant activity evaluation of n-[(2,4-dichlorophenyl)methyl]-2-(2,4-dioxo-1h-quinazolin-3-yl)acetamide novel 1-benzylsubstituted derivatives. ScienceRise: Pharmaceutical Science, 1 (35), 58–69. doi: https://doi.org/10.15587/2519-4852.2022.253554
- Tsyvunin, V., Shtrygol’, S., Havrylov, I., Shtrygol’, D., Reus, A. (2022). SGLT-2 inhibitors as potential anticonvulsants: empagliflozin, but not dapagliflozin, renders a pronounced effect and potentiates the sodium valproate activity in pentylenetetrazole-induced seizures. ScienceRise: Pharmaceutical Science, 5 (39), 83–90. doi: https://doi.org/10.15587/2519-4852.2022.266065
- Singh, T., Mishra, A., & Goel, R. K. (2021). PTZ kindling model for epileptogenesis, refractory epilepsy, and associated comorbidities: relevance and reliability. Metabolic Brain Disease, 36 (7), 1573–1590. doi: https://doi.org/10.1007/s11011-021-00823-3
- Wang, K., Liu, Y., Shi, Y., Yan, M., Rengarajan, T., Feng, X. (2021). Amomum tsaoko fruit extract exerts anticonvulsant effects through suppression of oxidative stress and neuroinflammation in a pentylenetetrazol kindling model of epilepsy in mice. Saudi Journal of Biological Sciences, 28 (8), 4247–4254. doi: https://doi.org/10.1016/j.sjbs.2021.06.007
- Godlevsky, L. S., Muratova, T. N., Kresyun, N. V., van Luijtelaar, G., Coenen, A. M. L. (2014). Anxiolytic and antidepressive effects of electric stimulation of the paleocerebellar cortex in pentylenetetrazol kindled rats. Acta Neurobiologiae Experimentale (Wars.), 74 (4), 456–464. Available at: http://www.ane.pl/pdf/7443.pdf
- Akyüz, E., Doğanyiğit, Z., Paudel, Y. N., Kaymak, E., Yilmaz, S., Uner, A., Shaikh, Mohd. F. (2020). Increased ACh-Associated Immunoreactivity in Autonomic Centers in PTZ Kindling Model of Epilepsy. Biomedicines, 8 (5), 113. https://doi.org/10.3390/biomedicines8050113
- Doğanyiğit, Z., Okan, A., Kaymak, E., Pandır, D., Silici, S. (2020). Investigation of protective effects of apilarnil against lipopolysaccharide induced liver injury in rats via TLR 4/ HMGB-1/ NF-κB pathway. Biomedicine & Pharmacotherapy, 125, 109967. doi: https://doi.org/10.1016/j.biopha.2020.109967
- Crowe, A., Yue, W. (2019). Semi-quantitative Determination of Protein Expression Using Immunohistochemistry Staining and Analysis: An Integrated Protocol. Bio-Protocol, 9 (24). doi: https://doi.org/10.21769/bioprotoc.3465
- Ramamoorthy, P., Xu, G., Shi, H. (2018). Expression of Hypoxia Inducible Factor 1alpha Is Protein Kinase A-dependent in Primary Cortical Astrocytes Exposed to Severe Hypoxia. Neurochemical Research, 44 (1), 258–268. doi: https://doi.org/10.1007/s11064-018-2516-9
- Zhou, F., Guan, L. B., Yu, P., Wang, X. D., Hu, Y. Y. (2016). Regulation of hypoxia-inducible factor-1α, regulated in development and DNA damage response-1 and mammalian target of rapamycin in human placental BeWo cells under hypoxia. Placenta, 45, 24–31. doi: https://doi.org/10.1016/j.placenta.2016.07.003
- Hu, Y., Zhou, H., Zhang, H., Sui, Y., Zhang, Z., Zou, Y. et al. (2022). The neuroprotective effect of dexmedetomidine and its mechanism. Frontiers in Pharmacology, 13. doi: https://doi.org/10.3389/fphar.2022.965661
- Wei, J., Jiang, H., Gao, H., Wang, G. (2016). Blocking Mammalian Target of Rapamycin (mTOR) Attenuates HIF-1α Pathways Engaged-Vascular Endothelial Growth Factor (VEGF) in Diabetic Retinopathy. Cellular Physiology and Biochemistry, 40 (6), 1570–1577. doi: https://doi.org/10.1159/000453207
- Lu, S., Shih, J.-Y., Jang, T.-W., Liam, C.-K., Yu, Y. (2021). Afatinib as First-Line Treatment in Asian Patients with EGFR Mutation-Positive NSCLC: A Narrative Review of Real-World Evidence. Advances in Therapy, 38 (5), 2038–2053. doi: https://doi.org/10.1007/s12325-021-01696-9
- Pagnuzzi-Boncompagni, M., Picco, V., Vial, V., Planas-Bielsa, V., Vandenberghe, A., Daubon, T. et al. (2021). Antiangiogenic Compound Axitinib Demonstrates Low Toxicity and Antitumoral Effects against Medulloblastoma. Cancers, 14 (1), 70. doi: https://doi.org/10.3390/cancers14010070
- Poshyvak, O. B., Pinyazhko, O. R., Godlevsky, L. S. (2021). Oxidative stress suppression contributes to antiseizure action of axitinib and rapamycin in pentylenetetrazol-induced kindling. The Ukrainian Biochemical Journal, 93 (2), 53–60. doi: https://doi.org/10.15407/ubj93.02.053
- Liu, Y., Li, X., Jin, A. (2019). Rapamycin Inhibits Nf-ΚB Activation by Autophagy to Reduce Catabolism in Human Chondrocytes. Journal of Investigative Surgery, 33 (9), 861–873. doi: https://doi.org/10.1080/08941939.2019.1574321
- Ni, Z., Li, H., Mu, D., Hou, J., Liu, X., Tang, S., Zheng, S. (2022). Rapamycin Alleviates 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis through Autophagy Induction and NF-κB Pathway Inhibition in Mice. Mediators of Inflammation, 2022, 1–12. doi: https://doi.org/10.1155/2022/2923216
- Bärnthaler, T., Jandl, K., Sill, H., Uhl, B., Schreiber, Y., Grill, M. (2019). Imatinib stimulates prostaglandin E2 and attenuates cytokine release via EP4 receptor activation. Journal of Allergy and Clinical Immunology, 143 (2), 794–797.e10. doi: https://doi.org/10.1016/j.jaci.2018.09.030
- Lin, Y.-Z., Shen, Y.-C., Wu, W.-R., Wang, W.-J., Wang, Y.-L., Lin, C.-Y. et al. (2021). Imatinib (STI571) Inhibits the Expression of Angiotensin-Converting Enzyme 2 and Cell Entry of the SARS-CoV-2-Derived Pseudotyped Viral Particles. International Journal of Molecular Sciences, 22 (13), 6938. doi: https://doi.org/10.3390/ijms22136938
- Pinto, A., Jahn, A., Immohr, M. B., Jenke, A., Döhrn, L., Kornfeld, M. et al. (2016). Modulation of Immunologic Response by Preventive Everolimus Application in a Rat CPB Model. Inflammation, 39 (5), 1771–1782. doi: https://doi.org/10.1007/s10753-016-0412-5
- Park, J.-W., Jeon, Y.-J., Lee, J.-C., Ahn, S.-R., Ha, S.-W., Bang, S.-Y. et al. (2012). Destabilization of TNF-α mRNA by Rapamycin. Biomolecules and Therapeutics, 20 (1), 43–49. doi: https://doi.org/10.4062/biomolther.2012.20.1.043
- Dai, J., Jiang, C., Chen, H., Chai, Y. (2019). Rapamycin Attenuates High Glucose-Induced Inflammation Through Modulation of mTOR/NF-κB Pathways in Macrophages. Frontiers in Pharmacology, 10. doi: https://doi.org/10.3389/fphar.2019.01292
- Bali, A., Arora, K., Hanifa, M., Jaggi, A. S. (2022). Exploring the pain attenuating potential of imatinib in chronic constriction injury model of neuropathic pain. Journal of Neuroscience and Neurological Surgery, 12 (1).
- AlAsfoor, S., Rohm, T. V., Bosch, A. J. T., Dervos, T., Calabrese, D., Matter, M. S. et al. (2018). Imatinib reduces non-alcoholic fatty liver disease in obese mice by targeting inflammatory and lipogenic pathways in macrophages and liver. Scientific Reports, 8 (1). doi: https://doi.org/10.1038/s41598-018-32853-w
- Chen, L., Hu, Y., Wang, S., Cao, K., Mai, W., Sha, W. et al. (2022). mTOR–neuropeptide Y signaling sensitizes nociceptors to drive neuropathic pain. JCI Insight, 7 (22). doi: https://doi.org/10.1172/jci.insight.159247
- Godlevsky, L. S., Shandra, A. A., Mikhaleva, I. I., Vastyanov, R. S., Mazarati, A. M. (1995). Seizure-protecting effects of kyotorphin and related peptides in an animal model of epilepsy. Brain Research Bulletin, 37 (3), 223–226. doi: https://doi.org/10.1016/0361-9230(94)00274-5
- D’Ignazio, L., Bandarra, D., Rocha, S. (2015). NF-κB and HIF crosstalk in immune responses. FEBS Journal, 283 (3), 413–424. Portico. https://doi.org/10.1111/febs.13578
- D’Ignazio, L., Shakir, D., Batie, M., Muller, H. A., Rocha, S. (2020). HIF-1β Positively Regulates NF-κB Activity via Direct Control of TRAF6. International Journal of Molecular Sciences, 21 (8), 3000. doi: https://doi.org/10.3390/ijms21083000
- Shi, J.-H., Sun, S.-C. (2018). Tumor Necrosis Factor Receptor-Associated Factor Regulation of Nuclear Factor κB and Mitogen-Activated Protein Kinase Pathways. Frontiers in Immunology, 9. doi: https://doi.org/10.3389/fimmu.2018.01849
- Mussbacher, M., Salzmann, M., Brostjan, C., Hoesel, B., Schoergenhofer, C., Datler, H. et al. (2019). Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Frontiers in Immunology, 10. doi: https://doi.org/10.3389/fimmu.2019.00085
- Malkov, M. I., Lee, C. T., Taylor, C. T. (2021). Regulation of the Hypoxia-Inducible Factor (HIF) by Pro-Inflammatory Cytokines. Cells, 10 (9), 2340. doi: https://doi.org/10.3390/cells10092340
- Liu, T., Zhang, L., Joo, D., Sun, S.-C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2 (1). doi: https://doi.org/10.1038/sigtrans.2017.23
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Olesya Poshyvak, Oleh Pinyazhko, Leonid Godlevsky, Mykhailo Pervak, Olha Yehorenko, Zuleyha Doganyigit, Asli Okan, Enes Akyuz, Suliman N. A. Hathal, Artem Volodimirovich Liashenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.