Recent advances in computational drug discovery for therapy against coronavirus SARS-CoV-2

Authors

DOI:

https://doi.org/10.15587/2519-4852.2023.290318

Keywords:

human coronavirus, QSAR, molecular docking, virtual screening, machine learning, molecular dynamics, structure-based drug design, Mpro and PLpro proteases, CADD, SARS-CоV-2

Abstract

Despite essential experimental efforts focused on studying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), computational chemistry methods are promising complementary tools in combating coronavirus disease 2019 (COVID-19). The present review aims to provide readers with the recent progress and advances in computational approaches currently used to streamline drug discovery and development in the context of COVID-19. Our review is dual purpose. It is intended (a) to familiarize the readership with the general concept of QSAR, in silico screening, molecular docking and molecular dynamics (MD) simulations and (b) to provide key examples of the recent applications of these computational tools in discovering novel therapeutic agents against COVID-19. We outline how structure- and ligand-based drug design can accelerate the structural elucidation of pharmacological drug targeting and the discovery of preclinical drug candidate molecules. Several examples of MD computational studies demonstrate how atomistic MD simulations can facilitate our understanding of the molecular basis of drug actions and biological mechanisms of virus inhibition in atomic detail. Finally, the short- and long-term perspectives in computational drug discovery are discussed.

The aim of this study is to summarize the last three years' progress and advances in computational approaches currently used to streamline the drug discovery and development process in the context of COVID-19.

Materials and methods. The literature overview of QSAR, in silico screening, machine learning, molecular docking and molecular dynamics (MD) simulations is given in the context of COVID-19. The literature search was performed using online databases, such as Scopus, Web of Science, PDB-protein databank, and PubMed, focusing on the following keywords - human coronavirus, QSAR, molecular docking, virtual screening, machine learning, molecular dynamics, Mpro and PLpro proteases, SARS-CоV-2, respectively.

Results. The review familiarizes the readership with the general concept of QSAR, in silico screening, machine learning, molecular docking and MD simulations and provides key examples of the recent applications of these computational tools in discovering novel therapeutic agents against COVID-19.

Conclusions. New insight into the recent progress and achievements in computer-guided drug discovery for therapeutic agents against SARS-CoV-2 is provided

Supporting Agency

  • Grant No. 42/0062 (2021.01/0062) “Molecular design, synthesis and screening of new potential antiviral pharmaceutical ingredients for the treatment of infectious diseases COVID-19” from the National Research Foundation of Ukraine.

Author Biographies

Volodymyr Ivanov, V. N. Karazin Kharkiv National University

Doctor of Chemical Sciences, Professor

Department of Materials Chemistry

School of Chemistry

Kateryna Lohachova, V. N. Karazin Kharkiv National University

Postgraduate Student

Department of Inorganic Chemistry

School of Chemistry

Yaroslav Kolesnik, V. N. Karazin Kharkiv National University

PhD

Department of Inorganic Chemistry

School of Chemistry

Anton Zakharov, V. N. Karazin Kharkiv National University

PhD

Department of Materials Chemistry

School of Chemistry

Larysa Yevsieieva, V. N. Karazin Kharkiv National University

Senior Lecturer

Department of Organic Chemistry

School of Chemistry

Alexander Kyrychenko, V. N. Karazin Kharkiv National University

Doctor of Chemical Sciences, Senior Researcher

Department of Inorganic Chemistry

School of Chemistry

Thierry Langer, University of Vienna

PhD, Professor

Department of Pharmaceutical Chemistry

Sergiy M. Kovalenko, V. N. Karazin Kharkiv National University

Doctor of Science, Professor

Department of Organic Chemistry

School of Chemistry

Oleg N. Kalugin, V. N. Karazin Kharkiv National University

PhD, Professor

Department of Inorganic Chemistry

School of Chemistry

References

  1. Vincenzi, M., Mercurio, F. A., Leone, M. (2023). Looking for SARS-CoV-2 Therapeutics Through Computational Approaches. Current Medicinal Chemistry, 30 (28), 3158–3214. doi: https://doi.org/10.2174/0929867329666221004104430
  2. Muratov, E. N., Amaro, R., Andrade, C. H., Brown, N., Ekins, S., Fourches, D. et al. (2021). A critical overview of computational approaches employed for COVID-19 drug discovery. Chemical Society Reviews, 50 (16), 9121–9151. doi: https://doi.org/10.1039/d0cs01065k
  3. Middha, S. K., Usha, T., Sukhralia, S., Pareek, C., Yadav, R., Agnihotri, R. et al.; Parihar, A., Khan, R., Kumar, A., Kaushik, A. K., Gohel, H. (Eds.) (2022). Prediction of drug-target interaction – a helping hand in drug repurposing. Computational Approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV-2 Infection. Academic Press, 519–536. doi: https://doi.org/10.1016/b978-0-323-91172-6.00006-6
  4. Nandi, S., Nayak, B. S., Khede, M. K., Saxena, A. K. (2022). Repurposing of Chemotherapeutics to Combat COVID-19. Current Topics in Medicinal Chemistry, 22 (32), 2660–2694. doi: https://doi.org/10.2174/1568026623666221130142517
  5. Yadav, M., Dhagat, S., Eswari, J. S. (2020). Emerging strategies on in silico drug development against COVID-19: challenges and opportunities. European Journal of Pharmaceutical Sciences, 155, 105522. doi: https://doi.org/10.1016/j.ejps.2020.105522
  6. Gao, K., Wang, R., Chen, J., Cheng, L., Frishcosy, J., Huzumi, Y. et al. (2022). Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chemical Reviews, 122 (13), 11287–11368. doi: https://doi.org/10.1021/acs.chemrev.1c00965
  7. Kumar, S., Kovalenko, S., Bhardwaj, S., Sethi, A., Gorobets, N. Yu., Desenko, S. M. et al. (2022). Drug repurposing against SARS-CoV-2 using computational approaches. Drug Discovery Today, 27 (7), 2015–2027. doi: https://doi.org/10.1016/j.drudis.2022.02.004
  8. Sadybekov, A. V., Katritch, V. (2023). Computational approaches streamlining drug discovery. Nature, 616 (7958), 673–685. doi: https://doi.org/10.1038/s41586-023-05905-z
  9. Shah, A., Jain, M.; Rudrapal, M., Egbuna, C. (Eds.) (2022). Limitations and future challenges of computer-aided drug design methods. Computer Aided Drug Design (CADD): From Ligand-Based Methods to Structure-Based Approaches. Elsevier, 283–297. doi: https://doi.org/10.1016/b978-0-323-90608-1.00006-x
  10. Chen, L., Fan, Z., Chang, J., Yang, R., Hou, H., Guo, H. et al. (2023). Sequence-based drug design as a concept in computational drug design. Nature Communications, 14 (1). doi: https://doi.org/10.1038/s41467-023-39856-w
  11. Bon, M., Bilsland, A., Bower, J., McAulay, K. (2022). Fragment‐based drug discovery –the importance of high‐quality molecule libraries. Molecular Oncology, 16 (21), 3761–3777. doi: https://doi.org/10.1002/1878-0261.13277
  12. Green, H., Koes, D. R., Durrant, J. D. (2021). DeepFrag: a deep convolutional neural network for fragment-based lead optimization. Chemical Science, 12 (23), 8036–8047. doi: https://doi.org/10.1039/d1sc00163a
  13. Shi, X.-X., Wang, Z.-Z., Wang, F., Hao, G.-F., Yang, G.-F. (2023). ACFIS 2.0: an improved web-server for fragment-based drug discovery via a dynamic screening strategy. Nucleic Acids Research, 51 (W1), W25–W32. doi: https://doi.org/10.1093/nar/gkad348
  14. Gurung, A. B., Ali, M. A., Lee, J., Farah, M. A., Al-Anazi, K. M. (2021). An Updated Review of Computer-Aided Drug Design and Its Application to COVID-19. BioMed Research International, 2021, 1–18. doi: https://doi.org/10.1155/2021/8853056
  15. Bajad, N. G., Rayala, S., Gutti, G., Sharma, A., Singh, M., Kumar, A., Singh, S. K. (2021). Systematic review on role of structure based drug design (SBDD) in the identification of anti-viral leads against SARS-Cov-2. Current Research in Pharmacology and Drug Discovery, 2, 100026. doi: https://doi.org/10.1016/j.crphar.2021.100026
  16. Zhang, S., Krumberger, M., Morris, M. A., Parrocha, C. M. T., Kreutzer, A. G., Nowick, J. S. (2021). Structure-based drug design of an inhibitor of the SARS-CoV-2 (COVID-19) main protease using free software: A tutorial for students and scientists. European Journal of Medicinal Chemistry, 218, 113390. doi: https://doi.org/10.1016/j.ejmech.2021.113390
  17. Varela‐Rial, A., Majewski, M., De Fabritiis, G. (2021). Structure based virtual screening: Fast and slow. WIREs Computational Molecular Science, 12 (2). doi: https://doi.org/10.1002/wcms.1544
  18. Chen, W., Liu, X., Zhang, S., Chen, S. (2023). Artificial intelligence for drug discovery: Resources, methods, and applications. Molecular Therapy – Nucleic Acids, 31, 691–702. doi: https://doi.org/10.1016/j.omtn.2023.02.019
  19. Nasser, M., Yusof, U. K., Salim, N. (2023). Deep Learning Based Methods for Molecular Similarity Searching: A Systematic Review. Processes, 11 (5). doi: https://doi.org/10.3390/pr11051340
  20. Amaro, R. E., Mulholland, A. J. (2018). Multiscale methods in drug design bridge chemical and biological complexity in the search for cures. Nature Reviews Chemistry, 2 (4). doi: https://doi.org/10.1038/s41570-018-0148
  21. Amin, Sk. A., Banerjee, S., Singh, S., Qureshi, I. A., Gayen, S., Jha, T. (2021). First structure–activity relationship analysis of SARS-CoV-2 virus main protease (Mpro) inhibitors: an endeavor on COVID-19 drug discovery. Molecular Diversity, 25 (3), 1827–1838. doi: https://doi.org/10.1007/s11030-020-10166-3
  22. Luo, D., Tong, J.-B., Zhang, X., Xiao, X.-C., Bian, S. (2022). Computational strategies towards developing novel SARS-CoV-2 Mpro inhibitors against COVID-19. Journal of Molecular Structure, 1247, 131378. doi: https://doi.org/10.1016/j.molstruc.2021.131378
  23. Golbraikh, A., Shen, M., Xiao, Z., Xiao, Y.-D., Lee, K.-H., Tropsha, A. (2003). Rational selection of training and test sets for the development of validated QSAR models. Journal of Computer-Aided Molecular Design, 17 (2/4), 241–253. doi: https://doi.org/10.1023/a:1025386326946
  24. Golbraikh, A., Tropsha, A. (2000). Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. Molecular Diversity, 5 (4), 231–243. doi: https://doi.org/10.1023/a:102137210868
  25. Tetko, I. V., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone, D., Ertl, P. et al. (2005). Virtual Computational Chemistry Laboratory – Design and Description. Journal of Computer-Aided Molecular Design, 19 (6), 453–463. doi: https://doi.org/10.1007/s10822-005-8694-y
  26. Yap, C. W. (2011). PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. Journal of Computational Chemistry, 32 (7), 1466–1474. doi: https://doi.org/10.1002/jcc.21707
  27. Todeschini, R., Consonni, V. (2000). Handbook of Molecular Descriptors. Weinheim: Wiley-VCH. doi: https://doi.org/10.1002/9783527613106
  28. Devillers, J., Balaban, A. T. (1999). Topological Indices and Related Descriptors in QSAR and QSPR. London: CRC Press, 811. doi: https://doi.org/10.1201/9781482296945
  29. Malinowski, E. R. (2002). Factor Analysis in Chemistry. Wiley-VCH, 432.
  30. Devillers, J. (1996). Genetic Algorithms in Molecular Modeling: Academic Press. doi: https://doi.org/10.1016/b978-0-12-213810-2.x5000-2
  31. Solnon, C., Jussien, N. (2013). Ant Colony Optimization and Constraint Programming. John Wiley & Sons. doi: https://doi.org/10.1002/9781118557563
  32. Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32. doi: https://doi.org/10.1023/a:1010933404324
  33. Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58 (1), 267–288. doi: https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
  34. Hesterberg, T., Choi, N. H., Meier, L., Fraley, C. (2008). Least angle and ℓ1 penalized regression: A review. Statistics Surveys, 2, 61–93. doi: https://doi.org/10.1214/08-ss035
  35. Zhao, P., Yu, B. (2007). Stagewise Lasso. Journal of Machine Learning Research, 8, 2701–2726.
  36. Hastie, T., Tibshirani, R. (2004). Efficient quadratic regularization for expression arrays. Biostatistics, 5 (3), 329–340. doi: https://doi.org/10.1093/biostatistics/kxh010
  37. Roy, K., Kar, S., Das, R. N. (2015). A Primer on QSAR/QSPR Modeling: Fundamental Concepts. Cham: Springer International Publishing. doi: https://doi.org/10.1007/978-3-319-17281-1
  38. Khaldan, A., Bouamrane, S., En-Nahli, F., El-mernissi, R., El khatabi, K., Hmamouchi, R. et al. (2021). Prediction of potential inhibitors of SARS-CoV-2 using 3D-QSAR, molecular docking modeling and ADMET properties. Heliyon, 7 (3), e06603. doi: https://doi.org/10.1016/j.heliyon.2021.e06603
  39. Jayakumar, J., Ebanesar, A., Gautam, S. (2023). Predictive analysis, diagnosis of COVID-19 through computational screening and validation with spectro photometrical approach. Toxicology and Environmental Health Sciences, 15 (2), 109–117. doi: https://doi.org/10.1007/s13530-023-00172-x
  40. Beger, R. D., Young, J. F., Fang, H. (2004). Discriminant Function Analyses of Liver-Specific Carcinogens. Journal of Chemical Information and Computer Sciences, 44 (3), 1107–1110. doi: https://doi.org/10.1021/ci0342829
  41. Hosmer, D. W. J., Lemeshow, S. (2000). Applied Logistic Regression. John Wiley & Sons. doi: https://doi.org/10.1002/0471722146
  42. Xu, Y., Zomer, S., Brereton, R. G. (2006). Support Vector Machines: A Recent Method for Classification in Chemometrics. Critical Reviews in Analytical Chemistry, 36 (3-4), 177–188. doi: https://doi.org/10.1080/10408340600969486
  43. Herbrich, R. (2001). Learning Kernel Classifiers Theory and Algorithms. Cambridge: The MIT Press. doi: https://doi.org/10.7551/mitpress/4170.001.0001
  44. Müller, K.-R., Rätsch, G., Sonnenburg, S., Mika, S., Grimm, M., Heinrich, N. (2005). Classifying ‘Drug-likeness' with Kernel-Based Learning Methods. Journal of Chemical Information and Modeling, 45 (2), 249–253. doi: https://doi.org/10.1021/ci049737o
  45. Rokach, L., Maimon, O. (2014). Data Mining with Decision Trees. Vol. 81. World Scientific, 328. doi: https://doi.org/10.1142/9097
  46. Santana, M. V. S., Silva-Jr, F. P.; Parihar, A., Khan, R., Kumar, A., Kaushik, A. K., Gohel, H. (Eds.) (2022). Artificial intelligence methods to repurpose and discover new drugs to fight the Coronavirus disease-2019 pandemic. Computational Approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV-2 Infection. Academic Press, 537–557. doi: https://doi.org/10.1016/b978-0-323-91172-6.00016-9
  47. Krishnamurthy, A., Goel, P.; Parihar, A., Khan, R., Kumar, A., Kaushik, A. K., Gohel, H. (Eds.) (2022). Artificial intelligence-based drug screening and drug repositioning tools and their application in the present scenario. Computational Approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV-2 Infection. Academic Press, 379–398. doi: https://doi.org/10.1016/b978-0-323-91172-6.00010-8
  48. Murcia-Soler, M., Pérez-Giménez, F., García-March, F. J., Salabert-Salvador, M. T., Díaz-Villanueva, W., Castro-Bleda, M. J., Villanueva-Pareja, A. (2004). Artificial Neural Networks and Linear Discriminant Analysis: A Valuable Combination in the Selection of New Antibacterial Compounds. Journal of Chemical Information and Computer Sciences, 44 (3), 1031–1041. doi: https://doi.org/10.1021/ci030340e
  49. Gabrielsson, R. B., Carlsson, G. (2019). Exposition and Interpretation of the Topology of Neural Networks. Paper presented at the 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). doi: https://doi.org/10.1109/icmla.2019.00180
  50. Skinnider, M. A., Stacey, R. G., Wishart, D. S., Foster, L. J. (2021). Chemical language models enable navigation in sparsely populated chemical space. Nature Machine Intelligence, 3 (9), 759–770. doi: https://doi.org/10.1038/s42256-021-00368-1
  51. Tay, D. W. P., Yeo, N. Z. X., Adaikkappan, K., Lim, Y. H., Ang, S. J. (2023). 67 million natural product-like compound database generated via molecular language processing. Scientific Data, 10 (1). doi: https://doi.org/10.1038/s41597-023-02207-x
  52. Chen, H., Bajorath, J. (2023). Designing highly potent compounds using a chemical language model. Scientific Reports, 13 (1). doi: https://doi.org/10.1038/s41598-023-34683-x
  53. Bilodeau, C., Jin, W., Jaakkola, T., Barzilay, R., Jensen, K. F. (2022). Generative models for molecular discovery: Recent advances and challenges. WIREs Computational Molecular Science, 12 (5). doi: https://doi.org/10.1002/wcms.1608
  54. Pyzer-Knapp, E., Laino, T., Grisafi, A., Wilkins, D., Willatt, M., Ceriotti, M. et al. (2019). Machine Learning in Chemistry: Data-Driven Algorithms, Learning Systems, and Predictions. American Chemical Society. doi: https://doi.org/10.1021/bk-2019-1326
  55. Varmuza, K., Filzmoser, P. (2009). Introduction to Multivariate Statistical Analysis in Chemometrics. Boca Raton: CRC Press, 336. doi: https://doi.org/10.1201/9781420059496
  56. Pen, L. Z., Xian Xian, K., Yew, C. F., Hau, O. S., Sumari, P., Abualigah, L. et al. (2023). Classification Applications with Deep Learning and Machine Learning Technologies. Cham: Springer International Publishing. doi: https://doi.org/10.1007/978-3-031-17576-3
  57. Veerasamy, R., Rajak, H., Jain, A. K., Sivadasan, S., Varghese, C., K., A. R. (2011). Validation of QSAR Models-Strategies and Importance. International Journal of Drug Design and Discovery, 2 (3), 511–518.
  58. Alexander, D. L. J., Tropsha, A., Winkler, D. A. (2015). Beware of R2: Simple, Unambiguous Assessment of the Prediction Accuracy of QSAR and QSPR Models. Journal of Chemical Information and Modeling, 55 (7), 1316–1322. doi: https://doi.org/10.1021/acs.jcim.5b00206
  59. Consonni, V., Ballabio, D., Todeschini, R. (2009). Comments on the Definition of the Q2 Parameter for QSAR Validation. Journal of Chemical Information and Modeling, 49 (7), 1669–1678. doi: https://doi.org/10.1021/ci900115y
  60. Liu, H., Cocea, M. (2017). Semi-random partitioning of data into training and test sets in granular computing context. Granular Computing, 2 (4), 357–386. doi: https://doi.org/10.1007/s41066-017-0049-2
  61. Joseph, V. R. (2022). Optimal ratio for data splitting. Statistical Analysis and Data Mining: The ASA Data Science Journal, 15 (4), 531–538. doi: https://doi.org/10.1002/sam.11583
  62. Arlot, S., Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4, 40–79. doi: https://doi.org/10.1214/09-ss054
  63. Espinosa, G., Arenas, A., Giralt, F. (2001). Fundamentals of Molecular Similarity. Boston: Springer US.
  64. Mestres, J., Rohrer, D. C., Maggiora, G. M. (1997). MIMIC: A molecular-field matching program. Exploiting applicability of molecular similarity approaches. Journal of Computational Chemistry, 18 (7), 934–954. doi: https://doi.org/10.1002/(sici)1096-987x(199705)18:7<934::aid-jcc6>3.0.co;2-s
  65. Klebe, G. (Ed.) (2007). Virtual Screening: An Alternative or Complement to High Throughput Screening? Kluwer Academic Publishers.
  66. Bajusz, D., Rácz, A., Héberger, K.; Chackalamannil, S., Rotella, D., Ward, S. E. (Eds.) (2017). Chemical Data Formats, Fingerprints, and Other Molecular Descriptions for Database Analysis and Searching. Comprehensive Medicinal Chemistry III. Oxford: Elsevier, 329–378. doi: https://doi.org/10.1016/b978-0-12-409547-2.12345-5
  67. Capecchi, A., Probst, D., Reymond, J.-L. (2020). One molecular fingerprint to rule them all: drugs, biomolecules, and the metabolome. Journal of Cheminformatics, 12 (1). doi: https://doi.org/10.1186/s13321-020-00445-4
  68. Willett, P. (2006). Similarity-based virtual screening using 2D fingerprints. Drug Discovery Today, 11 (23-24), 1046–1053. doi: https://doi.org/10.1016/j.drudis.2006.10.005
  69. Scior, T., Bender, A., Tresadern, G., Medina-Franco, J. L., Martínez-Mayorga, K., Langer, T. et al. (2012). Recognizing Pitfalls in Virtual Screening: A Critical Review. Journal of Chemical Information and Modeling, 52 (4), 867–881. doi: https://doi.org/10.1021/ci200528d
  70. Landrum, G. (2020). RDKit: Open-source cheminformatics. Available at: https://www.rdkit.org/
  71. Alves, V. M., Bobrowski, T., Melo‐Filho, C. C., Korn, D., Auerbach, S., Schmitt, C. et al. (2020). QSAR Modeling of SARS‐CoV Mpro Inhibitors Identifies Sufugolix, Cenicriviroc, Proglumetacin, and other Drugs as Candidates for Repurposing against SARS‐CoV‐2. Molecular Informatics, 40 (1). doi: https://doi.org/10.1002/minf.202000113
  72. Morgan, H. L. (1965). The Generation of a Unique Machine Description for Chemical Structures-A Technique Developed at Chemical Abstracts Service. Journal of Chemical Documentation, 5 (2), 107–113. doi: https://doi.org/10.1021/c160017a018
  73. Willett, P. (2003). Similarity-based approaches to virtual screening. Biochemical Society Transactions, 31 (3), 603–606. doi: https://doi.org/10.1042/bst0310603
  74. Raymond, J. W., Willett, P. (2002). Effectiveness of graph-based and fingerprint-based similarity measures for virtual screening of 2D chemical structure databases. Journal of Computer-Aided Molecular Design, 16 (1), 59–71. doi: https://doi.org/10.1023/a:1016387816342
  75. Gossen, J., Albani, S., Hanke, A., Joseph, B. P., Bergh, C., Kuzikov, M. et al. (2021). A Blueprint for High Affinity SARS-CoV-2 Mpro Inhibitors from Activity-Based Compound Library Screening Guided by Analysis of Protein Dynamics. ACS Pharmacology & Translational Science, 4 (3), 1079–1095. doi: https://doi.org/10.1021/acsptsci.0c00215
  76. Nikolova, N., Jaworska, J. (2003). Approaches to Measure Chemical Similarity – a Review. QSAR & Combinatorial Science, 22 (9-10), 1006–1026. Portico. doi: https://doi.org/10.1002/qsar.200330831
  77. Stumpfe, D., Ripphausen, P., Bajorath, J. (2012). Virtual compound screening in drug discovery. Future Medicinal Chemistry, 4 (5), 593–602. doi: https://doi.org/10.4155/fmc.12.19
  78. Giordano, D., Biancaniello, C., Argenio, M. A., Facchiano, A. (2022). Drug Design by Pharmacophore and Virtual Screening Approach. Pharmaceuticals, 15 (5), 646. doi: https://doi.org/10.3390/ph15050646
  79. Glaab, E., Manoharan, G. B., Abankwa, D. (2021). Pharmacophore Model for SARS-CoV-2 3CLpro Small-Molecule Inhibitors and in Vitro Experimental Validation of Computationally Screened Inhibitors. Journal of Chemical Information and Modeling, 61 (8), 4082–4096. doi: https://doi.org/10.1021/acs.jcim.1c00258
  80. Wermuth, C. G., Ganellin, C. R., Lindberg, P., Mitscher, L. A. (1998). Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998). Pure and Applied Chemistry, 70 (5), 1129–1143. doi: https://doi.org/10.1351/pac199870051129
  81. Molecular Operating Environment (MOE). (2023). 2022.02 Chemical Computing Group ULC. Montreal.
  82. Wolber, G., Langer, T. (2004). LigandScout: 3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters. Journal of Chemical Information and Modeling, 45 (1), 160–169. doi: https://doi.org/10.1021/ci049885e
  83. Brooijmans, N., Kuntz, I. D. (2003). Molecular Recognition and Docking Algorithms. Annual Review of Biophysics and Biomolecular Structure, 32 (1), 335–373. doi: https://doi.org/10.1146/annurev.biophys.32.110601.142532
  84. Weiner, S. J., Kollman, P. A., Nguyen, D. T., Case, D. A. (1986). An all atom force field for simulations of proteins and nucleic acids. Journal of Computational Chemistry, 7 (2), 230–252. doi: https://doi.org/10.1002/jcc.540070216
  85. Gohlke, H., Hendlich, M., Klebe, G. (2000). Knowledge-based scoring function to predict protein-ligand interactions. Journal of Molecular Biology, 295 (2), 337–356. doi: https://doi.org/10.1006/jmbi.1999.3371
  86. Eldridge, M. D., Murray, C. W., Auton, T. R., Paolini, G. V., Mee, R. P. (1997). Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design, 11 (5), 425–445. doi: https://doi.org/10.1023/a:1007996124545
  87. Alex, A., Finn, P. (1997). Fast and accurate predictions of relative binding energies. Journal of Molecular Structure: THEOCHEM, 398-399, 551–554. doi: https://doi.org/10.1016/s0166-1280(97)00031-6
  88. Ballester, P. J., Mitchell, J. B. O. (2010). A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking. Bioinformatics, 26 (9), 1169–1175. doi: https://doi.org/10.1093/bioinformatics/btq112
  89. Guedes, I. A., Barreto, A. M. S., Marinho, D., Krempser, E., Kuenemann, M. A., Sperandio, O. et al. (2021). New machine learning and physics-based scoring functions for drug discovery. Scientific Reports, 11 (1). doi: https://doi.org/10.1038/s41598-021-82410-1
  90. Charifson, P. S., Corkery, J. J., Murcko, M. A., Walters, W. P. (1999). Consensus Scoring: A Method for Obtaining Improved Hit Rates from Docking Databases of Three-Dimensional Structures into Proteins. Journal of Medicinal Chemistry, 42 (25), 5100–5109. doi: https://doi.org/10.1021/jm990352k
  91. Kumar, T. D. A. (2022). Drug Design. A Conceptual Overview. Abingdon: CRC Press. doi: https://doi.org/10.1201/9781003298755
  92. Kitchen, D. B., Decornez, H., Furr, J. R., Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews Drug Discovery, 3 (11), 935–949. doi: https://doi.org/10.1038/nrd1549
  93. Warren, G. L., Andrews, C. W., Capelli, A.-M., Clarke, B., LaLonde, J., Lambert, M. H. et al. (2005). A Critical Assessment of Docking Programs and Scoring Functions. Journal of Medicinal Chemistry, 49 (20), 5912–5931. doi: https://doi.org/10.1021/jm050362n
  94. Stahl, M., Rarey, M. (2001). Detailed Analysis of Scoring Functions for Virtual Screening. Journal of Medicinal Chemistry, 44 (7), 1035–1042. doi: https://doi.org/10.1021/jm0003992
  95. Zhu, H., Zhou, R., Cao, D., Tang, J., Li, M. (2023). A pharmacophore-guided deep learning approach for bioactive molecular generation. Nature Communications, 14 (1). doi: https://doi.org/10.1038/s41467-023-41454-9
  96. Mazanetz, M., Law, R., Whittaker, M. (2013). Hit and Lead Identification from Fragments. De novo Molecular Design. Weinheim: Wiley-VCH Verlag GmbH & Co.KGaA, 143–200. doi: https://doi.org/10.1002/9783527677016.ch6
  97. Wetzel, S., Klein, K., Renner, S., Rauh, D., Oprea, T. I., Mutzel, P., Waldmann, H. (2009). Interactive exploration of chemical space with Scaffold Hunter. Nature Chemical Biology, 5 (8), 581–583. doi: https://doi.org/10.1038/nchembio.187
  98. Langevin, M., Minoux, H., Levesque, M., Bianciotto, M. (2020). Scaffold-Constrained Molecular Generation. Journal of Chemical Information and Modeling, 60 (12), 5637–5646. doi: https://doi.org/10.1021/acs.jcim.0c01015
  99. Scott, O. B., Edith Chan, A. W. (2020). ScaffoldGraph: an open-source library for the generation and analysis of molecular scaffold networks and scaffold trees. Bioinformatics, 36 (12), 3930–3931. doi: https://doi.org/10.1093/bioinformatics/btaa219
  100. Schaub, J., Zander, J., Zielesny, A., Steinbeck, C. (2022). Scaffold Generator: a Java library implementing molecular scaffold functionalities in the Chemistry Development Kit (CDK). Journal of Cheminformatics, 14 (1). doi: https://doi.org/10.1186/s13321-022-00656-x
  101. Buckle, D. R., Erhardt, P. W., Ganellin, C. R., Kobayashi, T., Perun, T. J., Proudfoot, J., Senn-Bilfinger, J.; Desai, M. C. (Ed.) (2013). Glossary of Terms Used in Medicinal Chemistry Part II (IUPAC Recommendations 2013). Annual Reports in Medicinal Chemistry. Academic Press, 48, 387–418. doi: https://doi.org/10.1016/b978-0-12-417150-3.00024-7
  102. Hessler, G., Baringhaus, K.-H. (2010). The scaffold hopping potential of pharmacophores. Drug Discovery Today: Technologies, 7 (4), e263–e269. doi: https://doi.org/10.1016/j.ddtec.2010.09.001
  103. Brown, N. (Ed.) (2013). Scaffold Hopping in Medicinal Chemistry. Wiley-VCH. doi: https://doi.org/10.1002/9783527665143
  104. Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., Olson, A. J. (2016). Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols, 11 (5), 905–919. doi: https://doi.org/10.1038/nprot.2016.051
  105. Goodsell, D. S., Morris, G. M., Olson, A. J. (1996). Automated docking of flexible ligands: Applications of AutoDock. Journal of Molecular Recognition, 9 (1), 1–5. doi: https://doi.org/10.1002/(sici)1099-1352(199601)9:1<1::aid-jmr241>3.0.co;2-6
  106. Trott, O., Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31 (2), 455–461. doi: https://doi.org/10.1002/jcc.21334
  107. Eberhardt, J., Santos-Martins, D., Tillack, A. F., Forli, S. (2021). AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling, 61 (8), 3891–3898. doi: https://doi.org/10.1021/acs.jcim.1c00203
  108. Jones, G., Willett, P., Glen, R. C., Leach, A. R., Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 267 (3), 727–748. doi: https://doi.org/10.1006/jmbi.1996.0897
  109. Grosdidier, A., Zoete, V., Michielin, O. (2011). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Research, 39, W270–W277. doi: https://doi.org/10.1093/nar/gkr366
  110. Kramer, B., Rarey, M., Lengauer, T. (1999). Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins: Structure, Function, and Genetics, 37 (2), 228–241. doi: https://doi.org/10.1002/(sici)1097-0134(19991101)37:2<228::aid-prot8>3.0.co;2-8
  111. Saeedi, S., Rahmati, A., Chavoshpour-Natanzi, Z. (2022). Synthesis of pyrazolo[5′,1′:2,3]imidazo[1,5-c]quinazolin-6(5H)-ones and molecular docking study of their affinity against the COVID-19 main protease. RSC Advances, 12 (30), 19579–19589. doi: https://doi.org/10.1039/d2ra03179e
  112. Amendola, G., Ettari, R., Previti, S., Di Chio, C., Messere, A., Di Maro, S. et al. (2021). Lead Discovery of SARS-CoV-2 Main Protease Inhibitors through Covalent Docking-Based Virtual Screening. Journal of Chemical Information and Modeling, 61 (4), 2062–2073. doi: https://doi.org/10.1021/acs.jcim.1c00184
  113. Porto, V. A., Porto, R. S. (2022). In silico Studies of Novel Synthetic Compounds as Potential Drugs to Inhibit Coronavirus (SARS-CoV-2): A Systematic Review. Biointerface Research in Applied Chemistry, 12 (4), 4293–4306. doi: https://doi.org/10.33263/briac124.42934306
  114. Hou, N., Shuai, L., Zhang, L., Xie, X., Tang, K., Zhu, Y. et al. (2023). Development of Highly Potent Noncovalent Inhibitors of SARS-CoV-2 3CLpro. ACS Central Science, 9 (2), 217–227. doi: https://doi.org/10.1021/acscentsci.2c01359
  115. Evseeva, L. V., Ivanov, V. V., Karpina, V. R., Kovalenko, S. S., Kuznetsov, I. E., Langer, T. et al. (2020). The virtual screening application for searching potential antiviral agents to treat COVID-19 disease. Journal of Organic and Pharmaceutical Chemistry, 18 (2 (70)), 3–15. doi: https://doi.org/10.24959/ophcj.20.200019
  116. Kulkarni, S. A., Nagarajan, S. K., Ramesh, V., Palaniyandi, V., Selvam, S. P., Madhavan, T. (2020). Computational evaluation of major components from plant essential oils as potent inhibitors of SARS-CoV-2 spike protein. Journal of Molecular Structure, 1221, 128823. doi: https://doi.org/10.1016/j.molstruc.2020.128823
  117. Ahmad, M., Dwivedy, A., Mariadasse, R., Tiwari, S., Kar, D., Jeyakanthan, J., Biswal, B. K. (2020). Prediction of Small Molecule Inhibitors Targeting the Severe Acute Respiratory Syndrome Coronavirus-2 RNA-dependent RNA Polymerase. ACS Omega, 5 (29), 18356–18366. doi: https://doi.org/10.1021/acsomega.0c02096
  118. Lohachova, K. O., Sviatenko, A. S., Kyrychenko, A., Ivanov, V. V., Langer, T., Kovalenko, S. M., Kalugin, O. N. (2023). Computer-aided drug design of novel nirmatrelvir analogs inhibiting main protease of Coronavirus SARS-CoV-2. Journal of Applied Pharmaceutical Science, 13. In press
  119. Tejera, E., Munteanu, C. R., López-Cortés, A., Cabrera-Andrade, A., Pérez-Castillo, Y. (2020). Drugs Repurposing Using QSAR, Docking and Molecular Dynamics for Possible Inhibitors of the SARS-CoV-2 Mpro Protease. Molecules, 25 (21), 5172. doi: https://doi.org/10.3390/molecules25215172
  120. Pathak, N., Chen, Y.-T., Hsu, Y.-C., Hsu, N.-Y., Kuo, C.-J., Tsai, H. P. (2020). Uncovering Flexible Active Site Conformations of SARS-CoV-2 3CL Proteases through Protease Pharmacophore Clusters and COVID-19 Drug Repurposing. ACS Nano, 15 (1), 857–872. doi: https://doi.org/10.1021/acsnano.0c07383
  121. Zhang, C.-H., Stone, E. A., Deshmukh, M., Ippolito, J. A., Ghahremanpour, M. M., Tirado-Rives, J. et al. (2021). Potent Noncovalent Inhibitors of the Main Protease of SARS-CoV-2 from Molecular Sculpting of the Drug Perampanel Guided by Free Energy Perturbation Calculations. ACS Central Science, 7 (3), 467–475. doi: https://doi.org/10.1021/acscentsci.1c00039
  122. Salo-Ahen, O. M. H., Alanko, I., Bhadane, R., Bonvin, A. M. J. J., Honorato, R. V., Hossain, S. et al. (2020). Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development. Processes, 9 (1), 71. doi: https://doi.org/10.3390/pr9010071
  123. Allen, M. P., Tildesley, D. J. (2017). Computer Simulation of Liquids: Second Edition. Oxford: Oxford University Press. doi: https://doi.org/10.1093/oso/9780198803195.001.0001
  124. Christen, M., Hünenberger, P. H., Bakowies, D., Baron, R., Bürgi, R., Geerke, D. P. et al. (2005). The GROMOS software for biomolecular simulation: GROMOS05. Journal of Computational Chemistry, 26 (16), 1719–1751. doi: https://doi.org/10.1002/jcc.20303
  125. Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26 (16), 1701–1718. doi: https://doi.org/10.1002/jcc.20291
  126. Kalé, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N. et al. (1999). NAMD2: Greater Scalability for Parallel Molecular Dynamics. Journal of Computational Physics, 151 (1), 283–312. doi: https://doi.org/10.1006/jcph.1999.6201
  127. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., Karplus, M. (1983). CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry, 4 (2), 187–217. doi: https://doi.org/10.1002/jcc.540040211
  128. Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M. et al. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26 (16), 1668–1688. doi: https://doi.org/10.1002/jcc.20290
  129. Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S. et al. (2022). LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271, 108171. doi: https://doi.org/10.1016/j.cpc.2021.108171
  130. Smith, W., Yong, C. W., Rodger, P. M. (2002). DL_POLY: Application to molecular simulation. Molecular Simulation, 28 (5), 385–471. doi: https://doi.org/10.1080/08927020290018769
  131. Van Der Spoel, D., Lindahl, E., Hess, B., van Buuren, A. R., Apol, E., Meulenhoff, P. J. et al. (2010). Gromacs User Manual version 4.5.4. Available at: www.gromacs.org
  132. Verkhivker, G. M., Agajanian, S., Oztas, D. Y., Gupta, G. (2021). Atomistic Simulations and In Silico Mutational Profiling of Protein Stability and Binding in the SARS-CoV-2 Spike Protein Complexes with Nanobodies: Molecular Determinants of Mutational Escape Mechanisms. ACS Omega, 6 (40), 26354–26371. doi: https://doi.org/10.1021/acsomega.1c03558
  133. Domingo, M., Faraudo, J. (2023). Effect of surfactants on SARS-CoV-2: Molecular dynamics simulations. The Journal of Chemical Physics, 158 (11). doi: https://doi.org/10.1063/5.0135251
  134. Samanta, P. N., Majumdar, D., Leszczynski, J. (2023). Elucidating Atomistic Insight into the Dynamical Responses of the SARS-CoV-2 Main Protease for the Binding of Remdesivir Analogues: Leveraging Molecular Mechanics To Decode the Inhibition Mechanism. Journal of Chemical Information and Modeling, 63 (11), 3404–3422. doi: https://doi.org/10.1021/acs.jcim.3c00105
  135. Rashid, H. ur, Ahmad, N., Abdalla, M., Khan, K., Martines, M. A. U., Shabana, S. (2022). Molecular docking and dynamic simulations of Cefixime, Etoposide and Nebrodenside A against the pathogenic proteins of SARS-CoV-2. Journal of Molecular Structure, 1247, 131296. doi: https://doi.org/10.1016/j.molstruc.2021.131296
  136. Muhseen, Z. T., Hameed, A. R., Al-Hasani, H. M. H., Tahir ul Qamar, M., Li, G. (2020). Promising terpenes as SARS-CoV-2 spike receptor-binding domain (RBD) attachment inhibitors to the human ACE2 receptor: Integrated computational approach. Journal of Molecular Liquids, 320, 114493. doi: https://doi.org/10.1016/j.molliq.2020.114493
  137. Wakchaure, P. D., Ghosh, S., Ganguly, B. (2020). Revealing the Inhibition Mechanism of RNA-Dependent RNA Polymerase (RdRp) of SARS-CoV-2 by Remdesivir and Nucleotide Analogues: A Molecular Dynamics Simulation Study. The Journal of Physical Chemistry B, 124 (47), 10641–10652. doi: https://doi.org/10.1021/acs.jpcb.0c06747
  138. Byléhn, F., Menéndez, C. A., Perez-Lemus, G. R., Alvarado, W., de Pablo, J. J. (2021). Modeling the Binding Mechanism of Remdesivir, Favilavir, and Ribavirin to SARS-CoV-2 RNA-Dependent RNA Polymerase. ACS Central Science, 7 (1), 164–174. doi: https://doi.org/10.1021/acscentsci.0c01242
  139. Ghorbani, M., Brooks, B. R., Klauda, J. B. (2020). Critical Sequence Hotspots for Binding of Novel Coronavirus to Angiotensin Converter Enzyme as Evaluated by Molecular Simulations. The Journal of Physical Chemistry B, 124 (45), 10034–10047. doi: https://doi.org/10.1021/acs.jpcb.0c05994
  140. Carli, M., Sormani, G., Rodriguez, A., Laio, A. (2020). Candidate Binding Sites for Allosteric Inhibition of the SARS-CoV-2 Main Protease from the Analysis of Large-Scale Molecular Dynamics Simulations. The Journal of Physical Chemistry Letters, 12 (1), 65–72. doi: https://doi.org/10.1021/acs.jpclett.0c03182
  141. Sakkiah, S., Guo, W., Pan, B., Ji, Z., Yavas, G., Azevedo, M. et al. (2021). Elucidating Interactions Between SARS-CoV-2 Trimeric Spike Protein and ACE2 Using Homology Modeling and Molecular Dynamics Simulations. Frontiers in Chemistry, 8, 622632. doi: https://doi.org/10.3389/fchem.2020.622632
  142. Sheik Amamuddy, O., Verkhivker, G. M., Tastan Bishop, Ö. (2020). Impact of Early Pandemic Stage Mutations on Molecular Dynamics of SARS-CoV-2 Mpro. Journal of Chemical Information and Modeling, 60 (10), 5080–5102. doi: https://doi.org/10.1021/acs.jcim.0c00634
  143. Rajagopal, K., Varakumar, P., Aparna, B., Byran, G., Jupudi, S. (2020). Identification of some novel oxazine substituted 9-anilinoacridines as SARS-CoV-2 inhibitors for COVID-19 by molecular docking, free energy calculation and molecular dynamics studies. Journal of Biomolecular Structure and Dynamics, 39 (15), 5551–5562. doi: https://doi.org/10.1080/07391102.2020.1798285
  144. Yoshino, R., Yasuo, N., Sekijima, M. (2020). Identification of key interactions between SARS-CoV-2 main protease and inhibitor drug candidates. Scientific Reports, 10 (1), 12493. doi: https://doi.org/10.1038/s41598-020-69337-9
  145. Sang, P., Tian, S.-H., Meng, Z.-H., Yang, L.-Q. (2020). Anti-HIV drug repurposing against SARS-CoV-2. RSC Advances, 10 (27), 15775–15783. doi: https://doi.org/10.1039/d0ra01899f
  146. Mukherjee, S., Dasgupta, S., Adhikary, T., Adhikari, U., Panja, S. S. (2020). Structural insight to hydroxychloroquine-3C-like proteinase complexation from SARS-CoV-2: inhibitor modelling study through molecular docking and MD-simulation study. Journal of Biomolecular Structure and Dynamics, 39 (18), 7322–7334. doi: https://doi.org/10.1080/07391102.2020.1804458
  147. Grottesi, A., Bešker, N., Emerson, A., Manelfi, C., Beccari, A. R., Frigerio, F. et al. (2020). Computational Studies of SARS-CoV-2 3CLpro: Insights from MD Simulations. International Journal of Molecular Sciences, 21 (15), 5346. doi: https://doi.org/10.3390/ijms21155346
  148. Kumar, D., Kumari, K., Jayaraj, A., Kumar, V., Kumar, R. V., Dass, S. K. et al. (2020). Understanding the binding affinity of noscapines with protease of SARS-CoV-2 for COVID-19 using MD simulations at different temperatures. Journal of Biomolecular Structure and Dynamics, 39 (7), 2659–2672. doi: https://doi.org/10.1080/07391102.2020.1752310
  149. Al-Khafaji, K., AL-Duhaidahawi, D., Taskin Tok, T. (2021). Using integrated computational approaches to identify safe and rapid treatment for SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 39 (9), 3387–3395. doi: https://doi.org/10.1080/07391102.2020.1764392
  150. Muhammad, I. A., Muangchoo, K., Muhammad, A., Ajingi, Y. S., Muhammad, I. Y., Umar, I. D., Muhammad, A. B. (2020). A Computational Study to Identify Potential Inhibitors of SARS-CoV-2 Main Protease (Mpro) from Eucalyptus Active Compounds. Computation, 8 (3), 79. doi: https://doi.org/10.3390/computation8030079
  151. Maurya, A. K., Mishra, N. (2020). In silico validation of coumarin derivatives as potential inhibitors against Main Protease, NSP10/NSP16-Methyltransferase, Phosphatase and Endoribonuclease of SARS CoV-2. Journal of Biomolecular Structure and Dynamics, 39 (18), 7306–7321. doi: https://doi.org/10.1080/07391102.2020.1808075
  152. Alamri, M. A., Tahir ul Qamar, M., Mirza, M. U., Bhadane, R., Alqahtani, S. M., Muneer, I. et al. (2020). Pharmacoinformatics and molecular dynamics simulation studies reveal potential covalent and FDA-approved inhibitors of SARS-CoV-2 main protease 3CLpro. Journal of Biomolecular Structure and Dynamics, 39 (13), 4936–4948. doi: https://doi.org/10.1080/07391102.2020.1782768
  153. Stoddard, S. V., Stoddard, S. D., Oelkers, B. K., Fitts, K., Whalum, K., Whalum, K. et al. (2020). Optimization Rules for SARS-CoV-2 Mpro Antivirals: Ensemble Docking and Exploration of the Coronavirus Protease Active Site. Viruses, 12 (9), 942. doi: https://doi.org/10.3390/v12090942
  154. Rout, J., Swain, B. C., Tripathy, U. (2020). In silicoinvestigation of spice molecules as potent inhibitor of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 40 (2), 860–874. doi: https://doi.org/10.1080/07391102.2020.1819879
  155. Umesh, Kundu, D., Selvaraj, C., Singh, S. K., Dubey, V. K. (2021). Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. Journal of Biomolecular Structure and Dynamics, 39 (9), 3428–3434. doi: https://doi.org/10.1080/07391102.2020.1763202
  156. El Hassab, M. A., Shoun, A. A., Al-Rashood, S. T., Al-Warhi, T., Eldehna, W. M. (2020). Identification of a New Potential SARS-COV-2 RNA-Dependent RNA Polymerase Inhibitor via Combining Fragment-Based Drug Design, Docking, Molecular Dynamics, and MM-PBSA Calculations. Frontiers in Chemistry, 8, 584894. doi: https://doi.org/10.3389/fchem.2020.584894
  157. Gangadevi, S., Badavath, V. N., Thakur, A., Yin, N., De Jonghe, S., Acevedo, O. et al. (2021). Kobophenol A Inhibits Binding of Host ACE2 Receptor with Spike RBD Domain of SARS-CoV-2, a Lead Compound for Blocking COVID-19. The Journal of Physical Chemistry Letters, 12 (7), 1793–1802. doi: https://doi.org/10.1021/acs.jpclett.0c03119
  158. Liang, J., Karagiannis, C., Pitsillou, E., Darmawan, K. K., Ng, K., Hung, A., Karagiannis, T. C. (2020). Site mapping and small molecule blind docking reveal a possible target site on the SARS-CoV-2 main protease dimer interface. Computational Biology and Chemistry, 89, 107372. doi: https://doi.org/10.1016/j.compbiolchem.2020.107372
  159. Khan, M. A., Meena, S., Alam, Md. A., Ghosh, S. (2020). A solvent sensitive coumarin derivative coupled with gold nanoparticles as selective fluorescent sensor for Pb2+ ions in real samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 243, 118810. doi: https://doi.org/10.1016/j.saa.2020.118810
  160. Kumar, K. A., Sharma, M., Dalal, V., Singh, V., Tomar, S., Kumar, P. (2021). Multifunctional inhibitors of SARS-CoV-2 by MM/PBSA, essential dynamics, and molecular dynamic investigations. Journal of Molecular Graphics and Modelling, 107, 107969. doi: https://doi.org/10.1016/j.jmgm.2021.107969
  161. Eltayb, W. A., Abdalla, M., Rabie, A. M. (2023). Novel Investigational Anti-SARS-CoV-2 Agent Ensitrelvir “S-217622”: A Very Promising Potential Universal Broad-Spectrum Antiviral at the Therapeutic Frontline of Coronavirus Species. ACS Omega, 8 (6), 5234–5246. doi: https://doi.org/10.1021/acsomega.2c03881
  162. King, E., Aitchison, E., Li, H., Luo, R. (2021). Recent Developments in Free Energy Calculations for Drug Discovery. Frontiers in Molecular Biosciences, 8, 712085. doi: https://doi.org/10.3389/fmolb.2021.712085
  163. Zara, L., Efrém, N.-L., van Muijlwijk-Koezen, J. E., de Esch, I. J. P., Zarzycka, B. (2021). Progress in Free Energy Perturbation: Options for Evolving Fragments. Drug Discovery Today: Technologies, 40, 36–42. doi: https://doi.org/10.1016/j.ddtec.2021.10.001
  164. Hansson, T., Marelius, J., Åqvist, J. (1998). Ligand binding affinity prediction by linear interaction energy methods. Journal of Computer-Aided Molecular Design, 12 (1), 27–35. doi: https://doi.org/10.1023/a:1007930623000
  165. Ngo, S. T., Hung, H. M., Nguyen, M. T. (2016). Fast and accurate determination of the relative binding affinities of small compounds to HIV-1 protease using non-equilibrium work. Journal of Computational Chemistry, 37 (31), 2734–2742. doi: https://doi.org/10.1002/jcc.24502
  166. Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L. et al. (2000). Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models. Accounts of Chemical Research, 33 (12), 889–897. doi: https://doi.org/10.1021/ar000033j
  167. Jarzynski, C. (1997). Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach. Physical Review E, 56 (5), 5018–5035. doi: https://doi.org/10.1103/physreve.56.5018
  168. Kollman, P. (1993). Free energy calculations: Applications to chemical and biochemical phenomena. Chemical Reviews, 93 (7), 2395–2417. doi: https://doi.org/10.1021/cr00023a004
  169. Zwanzig, R. W. (2004). High-Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases. The Journal of Chemical Physics, 22 (8), 1420–1426. doi: https://doi.org/10.1063/1.1740409
  170. Fu, H., Chen, H., Cai, W., Shao, X., Chipot, C. (2021). BFEE2: Automated, Streamlined, and Accurate Absolute Binding Free-Energy Calculations. Journal of Chemical Information and Modeling, 61 (5), 2116–2123. doi: https://doi.org/10.1021/acs.jcim.1c00269
  171. Blazhynska, M., Goulard Coderc de Lacam, E., Chen, H., Roux, B., Chipot, C. (2022). Hazardous Shortcuts in Standard Binding Free Energy Calculations. The Journal of Physical Chemistry Letters, 13 (27), 6250–6258. doi: https://doi.org/10.1021/acs.jpclett.2c01490
  172. Coderc de Lacam, E. G., Blazhynska, M., Chen, H., Gumbart, J. C., Chipot, C. (2022). When the Dust Has Settled: Calculation of Binding Affinities from First Principles for SARS-CoV-2 Variants with Quantitative Accuracy. Journal of Chemical Theory and Computation, 18 (10), 5890–5900. doi: https://doi.org/10.1021/acs.jctc.2c00604
  173. Gupta, A., Zhou, H.-X. (2020). Profiling SARS-CoV-2 Main Protease (MPRO) Binding to Repurposed Drugs Using Molecular Dynamics Simulations in Classical and Neural Network-Trained Force Fields. ACS Combinatorial Science, 22 (12), 826–832. doi: https://doi.org/10.1021/acscombsci.0c00140
  174. Ngo, S. T., Nguyen, T. H., Tung, N. T., Mai, B. K. (2022). Insights into the binding and covalent inhibition mechanism of PF-07321332 to SARS-CoV-2 Mpro. RSC Advances, 12 (6), 3729–3737. doi: https://doi.org/10.1039/d1ra08752e
  175. Zanetti-Polzi, L., Smith, M. D., Chipot, C., Gumbart, J. C., Lynch, D. L., Pavlova, A. et al. (2021). Tuning Proton Transfer Thermodynamics in SARS-CoV-2 Main Protease: Implications for Catalysis and Inhibitor Design. The Journal of Physical Chemistry Letters, 12 (17), 4195–4202. doi: https://doi.org/10.1021/acs.jpclett.1c00425
  176. Qayed, W. S., Ferreira, R. S., Silva, J. R. A. (2022). In Silico Study towards Repositioning of FDA-Approved Drug Candidates for Anticoronaviral Therapy: Molecular Docking, Molecular Dynamics and Binding Free Energy Calculations. Molecules, 27 (18), 5988. doi: https://doi.org/10.3390/molecules27185988
  177. Parks, C. D., Gaieb, Z., Chiu, M., Yang, H., Shao, C., Walters, W. P. et al. (2020). D3R grand challenge 4: blind prediction of protein–ligand poses, affinity rankings, and relative binding free energies. Journal of Computer-Aided Molecular Design, 34 (2), 99–119. doi: https://doi.org/10.1007/s10822-020-00289-y
  178. Gentile, F., Yaacoub, J. C., Gleave, J., Fernandez, M., Ton, A.-T., Ban, F. et al. (2022). Artificial intelligence-enabled virtual screening of ultra-large chemical libraries with deep docking. Nature Protocols, 17 (3), 672–697. doi: https://doi.org/10.1038/s41596-021-00659-2
  179. Gorgulla, C., Boeszoermenyi, A., Wang, Z.-F., Fischer, P. D., Coote, P. W., Padmanabha Das, K. M. et al. (2020). An open-source drug discovery platform enables ultra-large virtual screens. Nature, 580 (7805), 663–668. doi: https://doi.org/10.1038/s41586-020-2117-z
  180. Arantes, P. R., Saha, A., Palermo, G. (2020). Fighting COVID-19 Using Molecular Dynamics Simulations. ACS Central Science, 6 (10), 1654–1656. doi: https://doi.org/10.1021/acscentsci.0c01236
  181. Frye, L., Bhat, S., Akinsanya, K., Abel, R. (2021). From computer-aided drug discovery to computer-driven drug discovery. Drug Discovery Today: Technologies, 39, 111–117. doi: https://doi.org/10.1016/j.ddtec.2021.08.001
Recent advances in computational drug discovery for therapy against coronavirus SARS-CoV-2

Downloads

Published

2023-12-31

How to Cite

Ivanov, V., Lohachova, K., Kolesnik, Y., Zakharov, A., Yevsieieva, L., Kyrychenko, A., Langer, T., Kovalenko, S. M., & Kalugin, O. N. (2023). Recent advances in computational drug discovery for therapy against coronavirus SARS-CoV-2. ScienceRise: Pharmaceutical Science, (6(46). https://doi.org/10.15587/2519-4852.2023.290318

Issue

Section

Pharmaceutical Science