Cytotoxicity and antitumor activity of sesquiterpene lactones. Structure, activity
DOI:
https://doi.org/10.15587/2519-4852.2023.295228Keywords:
sesquiterpene lactones, tumour cell culture, cytotoxicity, inoculated tumour lines, antitumor activityAbstract
The article discusses the results of 19 samples screening of sesquiterpene γ-lactones argolide, grosheimin, estafiatin, and their derivatives for cytotoxicity and antitumor activity. The research results indicate significant cytotoxicity and selectivity of the action of sesquiterpene γ-lactones and their derivatives against most tumor cell lines.
Aim. The purpose of this study is to study the cytotoxicity and antitumor activity of the sesquiterpene γ-lactones argolide, grosheimin, estafiatin and their chemically modified derivatives, as practically renewable materials.
Methods. The cytotoxicity of the compounds was determined using vero cells, THP-1, Pliss lymphosarcoma cell lines, Walker carcinosarcoma, sarcoma 45, sarcoma-180, alveolar liver cancer PC-1, P-388 leukemia, L-1210 leukemia, and resistant to 5-fluorouracil sarcoma 45.
The antitumor activity of the samples was studied in in vivo experiments on white outbred rats with transplanted tumor strains and was assessed by inhibition of tumor growth and the magnitude of the increase in average life expectancy.
Statistical processing of the results was carried out using the program “GraphPad Prism v. 6.0" (GraphPad Software Inc., USA).
Conclusion. When determining cytotoxicity in in vitro samples of the sesquiterpene γ-lactones argolide, grosheimin, and estafiatin showed selectivity of their action on cells of 8 tumor lines, on cells of human acute monocytic leukemia THP-1 and in relation to the larvae of sea crustaceans Artemia salina (Leach).
Samples of argolide, 8-acetylgrosheimin, 13-morpholinogrosheimin, 3-keto-4-methylene-cis-guaianolide, 3α-acetoxyisozaluzanin C, and 10α(14)-epoxy-1,5,7α,4,6β(H)-guai-11(13)-en-4(3),6(12)-diolide in experiments in vivo possessed high antitumor activity against transplantable tumor strains of Pliss lymphosarcoma, Walker carcinosarcoma, sarcoma 45, sarcoma 37, sarcoma 180, alveolar liver cancer PC-1, leukemia P-388 and L-1210, resistant to 5-fluorouracil sarcoma 45
References
- Fraga, B. M. Natural Sesquiterpenoids. Journal Natural Product Reports, (2006), 23, 943–972; (2007), 24, 1350–1381; (2008), 25, 1180–1209; (2009), 26, 1125–1155; (2010), 27, 1681–1708; (2011), 28, 1580–1610; (2012), 29, 1334–1366; (2013), 30, 1226–1264.
- Sulsen, V., Martino, V. (2018). Sesquiterpene lactones. Advances in their chemistry and biological aspects. Cham: Springer International Publishing, 381. doi: https://doi.org/10.1007/978-3-319-78274-4
- Beer, M. F., Bivona, A. E., Sánchez Alberti, A., Cerny, N., Reta, G. F., Martín, V. S. et al. (2019). Preparation of Sesquiterpene Lactone Derivatives: Cytotoxic Activity and Selectivity of Action. Molecules, 24 (6), 1113. doi: https://doi.org/10.3390/molecules24061113
- Zheng, Y., Ke, C.-Q., Zhou, S., Feng, L., Tang, C., Ye, Y. (2021). Cytotoxic guaianolides and seco-guaianolides from Artemisia atrovirens. Fitoterapia, 151, 104900. doi: https://doi.org/10.1016/j.fitote.2021.104900
- Zan, K., Chen, X.-Q., Zhao, M.-B., Jiang, Y., Tu, P.-F. (2020). Cytotoxic sesquiterpene lactones from Artemisia myriantha. Phytochemistry Letters, 37, 33–36. doi: https://doi.org/10.1016/j.phytol.2020.03.009
- Chinchilla, N., Santana, A., Varela, R. M., Fronczek, F. R., Molinillo, J. M. G., Macías, F. A. (2019). Preparation and Phytotoxicity Evaluation of 11,13-Dehydro seco-Guaianolides. Journal of Natural Products, 82 (9), 2501–2508. doi: https://doi.org/10.1021/acs.jnatprod.9b00285
- Kim, Y., Sengupta, S., Sim, T. (2021). Natural and Synthetic Lactones Possessing Antitumor Activities. International Journal of Molecular Sciences, 22 (3), 1052. doi: https://doi.org/10.3390/ijms22031052
- El Gaafary, M., Morad, S. A. F., Schmiech, M., Syrovets, T., Simmet, T. (2022). Arglabin, an EGFR receptor tyrosine kinase inhibitor, suppresses proliferation and induces apoptosis in prostate cancer cells. Biomedicine & Pharmacotherapy, 156, 113873. doi: https://doi.org/10.1016/j.biopha.2022.113873
- Li, Q., Wang, Z., Xie, Y., Hu, H. (2020). Antitumor activity and mechanism of costunolide and dehydrocostus lactone: Two natural sesquiterpene lactones from the Asteraceae family. Biomedicine & Pharmacotherapy, 125, 109955. doi: https://doi.org/10.1016/j.biopha.2020.109955
- Wang, J., Su, S., Zhang, S., Zhai, S., Sheng, R., Wu, W., Guo, R. (2019). Structure-activity relationship and synthetic methodologies of α-santonin derivatives with diverse bioactivities: A mini-review. European Journal of Medicinal Chemistry, 175, 215–233. doi: https://doi.org/10.1016/j.ejmech.2019.04.066
- Schomburg, C., Schuehly, W., Da Costa, F. B., Klempnauer, K.-H., Schmidt, T. J. (2013). Natural sesquiterpene lactones as inhibitors of Myb-dependent gene expression: Structure–activity relationships. European Journal of Medicinal Chemistry, 63, 313–320. doi: https://doi.org/10.1016/j.ejmech.2013.02.018
- Adekenov, S. M., Tolokonnikov, Y. G., Itzhanova, Kh. I., Zhabaeva, A. N., Korneev, V. S., Khabarov, I. A. (2017). Pat. No. 32482 KAZ. A method for complex processing of Artemisia glabella raw materials. declareted: 16.10.2017; published: 15.11.2017. Bul. No. 21.
- Mantler, S. N., Zhakanov, M. M., Shaikenova, Zh. S., Adekenov, S. M. (2019). Dynamics of the accumulation of sesquiterpene lactones arglabin and argolide in Artemisia glabella. XIII International Symposium on the Chemistry of Natural Compounds. Shanghai, 140.
- Mukhametzhanova, G., Asanova, G., Adekenova, G. S., Medeubayeva, B., Kishkentayeva, A., Adekenov, S. (2022). Chartolepis intermedia Boiss. and Centaurea ruthenica Lam. – New Medicina Plants Containing Pharmacologically Active Compounds. Open Access Macedonian Journal of Medical Sciences, 10 (A), 56–64. doi: https://doi.org/10.3889/oamjms.2022.7232
- Adekenov, S. М., Shaimerdenova, Z. R., Adekenova, K. S., Kishkentayeva, A. S. (2022). Synthesis and biological evaluation of new derivatives of grossheimin. Fitoterapia, 158, 105154. doi: https://doi.org/10.1016/j.fitote.2022.105154
- Adekenov, S. M., Kishkentayeva, A. S., Khasenova, A. B., Shul’ts, E. E., Gatilov, Yu. V., Bagryanskaya, I. Yu. (2021). New Arylhalo-Derivatives of Grosshemin. Chemistry of Natural Compounds, 57 (4), 685–690. doi: https://doi.org/10.1007/s10600-021-03450-7
- Adekenov, S. (2022). Syntheses Based on 3,4α-Epoxy-1,5,7α,6β(H)-guai-10(14),11(13)-dien-6,12-olide. Molecules, 27 (6), 1862. doi: https://doi.org/10.3390/molecules27061862
- Adekenov, S., Spiwok, V., Beutler, J., Maslova, O., Rakhimov, K. (2023). Cytotoxicity and Antitumor Activity of Arglabin and its Derivatives. Open Access Macedonian Journal of Medical Sciences, 11 (B), 412–420. doi: https://doi.org/10.3889/oamjms.2023.11114
- Ren, Y., de Blanco, E. J. C., Fuchs, J. R., Soejarto, D. D., Burdette, J. E., Swanson, S. M., Kinghorn, A. D. (2019). Potential Anticancer Agents Characterized from Selected Tropical Plants. Journal of Natural Products, 82 (3), 657–679. doi: https://doi.org/10.1021/acs.jnatprod.9b00018
- Shoemaker, R. H. (2006). The NCI60 human tumour cell line anticancer drug screen. Nature Reviews Cancer, 6 (10), 813–823. doi: https://doi.org/10.1038/nrc1951
- Moumou, M., El Bouakher, A., Allouchi, H., El Hakmaoui, A., Benharref, A., Mathieu, V. (2014). Synthesis and biological evaluation of 9α- and 9β-hydroxyamino-parthenolides as novel anticancer agents. Bioorganic & Medicinal Chemistry Letters, 24 (16), 4014–4018. doi: https://doi.org/10.1016/j.bmcl.2014.06.019
- Adekenov, S. M. (2013). Natural Sesquiterpene Lactones as Renewable Chemical Materials for New Medicinal Products. Eurasian Chemico-Technological Journal, 15 (3), 163–174. doi: https://doi.org/10.18321/ectj220
- Mathema, V. B., Koh, Y.-S., Thakuri, B. C., Sillanpää, M. (2011). Parthenolide, a Sesquiterpene Lactone, Expresses Multiple Anti-cancer and Anti-inflammatory Activities. Inflammation, 35 (2), 560–565. doi: https://doi.org/10.1007/s10753-011-9346-0
- Jafari, N., Nazeri, S., Enferadi, S. T. (2018). Parthenolide reduces metastasis by inhibition of vimentin expression and induces apoptosis by suppression elongation factor α − 1 expression. Phytomedicine, 41, 67–73. doi: https://doi.org/10.1016/j.phymed.2018.01.022
- Moujir, L., Callies, O., Sousa, P. M. C., Sharopov, F., Seca, A. M. L. (2020). Applications of Sesquiterpene Lactones: A Review of Some Potential Success Cases. Applied Sciences, 10 (9), 3001. doi: https://doi.org/10.3390/app10093001
- Berdan, C. A., Ho, R., Lehtola, H. S., To, M., Hu, X., Huffman, T. R. et al. (2019). Parthenolide Covalently Targets and Inhibits Focal Adhesion Kinase in Breast Cancer Cells. Cell Chemical Biology, 26 (7), 1027-1035.e22. doi: https://doi.org/10.1016/j.chembiol.2019.03.016
- Gach, K., Długosz, A., Janecka, A. (2015). The role of oxidative stress in anticancer activity of sesquiterpene lactones. Naunyn-Schmiedeberg’s Archives of Pharmacology, 388 (5), 477–486. doi: https://doi.org/10.1007/s00210-015-1096-3
- Dey, S., Sarkar, M., Giri, B. (2016). Anti-inflammatory and Anti-tumor Activities of Parthenolide: An Update. Journal of Chemical Biology & Therapeutics, 1 (2). doi: https://doi.org/10.4172/2572-0406.1000107
- Ren, Y., Yu, J., Douglas Kinghorn, A. (2016). Development of Anticancer Agents from Plant-Derived Sesquiterpene Lactones. Current Medicinal Chemistry, 23 (23), 2397–2420. doi: https://doi.org/10.2174/0929867323666160510123255
- Wang, X., Yu, Z., Wang, C., Cheng, W., Tian, X., Huo, X. et al. (2017). Alantolactone, a natural sesquiterpene lactone, has potent antitumor activity against glioblastoma by targeting IKKβ kinase activity and interrupting NF-κB/COX-2-mediated signaling cascades. Journal of Experimental & Clinical Cancer Research, 36 (1). doi: https://doi.org/10.1186/s13046-017-0563-8
- Kim, S. L., Liu, Y. C., Seo, S. Y., Kim, S. H., Kim, I. H., Lee, S. O. et al. (2015). Parthenolide induces apoptosis in colitis-associated colon cancer, inhibiting NF-κB signaling. Oncology Letters, 9 (5), 2135–2142. doi: https://doi.org/10.3892/ol.2015.3017
- Akhmetova, S., Seydakhmetova, R., Adekenov, S. (2008). Screening for cytotoxicity of natural sesquiterpene lactones and alkaloids and their derivatives. Russian Biotherapeutic Journal, 2 (1), 35.
- Torrens, F., Castellano, G. (2020). Structure-Activity Relationships of Cytotoxic Lactones as Inhibitors and Mechanisms of Action. Current Drug Discovery Technologies, 17 (2), 166–182. doi: https://doi.org/10.2174/1570163816666190101113434
- Adekenov, S. M. (2017). Sesquiterpene lactones with unusual structure. Their biogenesis and biological activity. Fitoterapia, 121, 16–30. doi: https://doi.org/10.1016/j.fitote.2017.05.017
- Borgo, J., Laurella, L. C., Martini, F., Catalán, C. A. N., Sülsen, V. P. (2021). Stevia Genus: Phytochemistry and Biological Activities Update. Molecules, 26 (9), 2733. doi: https://doi.org/10.3390/molecules26092733
- Schepetkin, I. A., Kirpotina, L. N., Mitchell, P. T., Kishkentaeva, А. S., Shaimerdenova, Z. R., Atazhanova, G. A. et al. (2018). The natural sesquiterpene lactones arglabin, grosheimin, agracin, parthenolide, and estafiatin inhibit T cell receptor (TCR) activation. Phytochemistry, 146, 36–46. doi: https://doi.org/10.1016/j.phytochem.2017.11.010
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Olga Maslova, Zhanar Iskakova, Aidos Doskaliyev, Sergazy Adekenov
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.