Comparative pharmacognostic study of the roots of the most common species of plants of the genus arctium

Authors

DOI:

https://doi.org/10.15587/2519-4852.2024.307262

Keywords:

root, Arctium, morphological and anatomical structure, identification, organic acids, hydroxycinnamic acids, polyphenols

Abstract

The aim is to carry out a comparative pharmacognostic study of the roots of A. tomentosum and A. minus with the root of A. lappa to confirm or deny their interchangeability.

Materials and methods. A Delta optic BioLight 300 microscope (Poland) was used to study the macro- and microscopic features of plant raw materials. The method of gas chromatography-mass spectrometry was used to identify and quantify organic, including fatty, acids. Quantitative content of amount of organic acids, ascorbic acid, total polyphenols and amount of hydroxycinnamic acids was determined by using spectrophotometry. The content of polysaccharides was determined by the gravimetric method.

The results. For the first time, a comparative morphological and anatomical study of the roots of A. tomentosum and A. minus in comparison with the root of A. lappa was carried out. As a result, a distinctive diagnostic microscopic feature of the roots was established: the shape of the receptacles of the schizogen type. For the first time, the component composition of organic, including fatty acids, for the roots of A. tomentosum and A. minus was determined in comparison with the root of A. lappa, which is the same. The content of 11 organics and 12 fatty acids in plant raw materials of 3 Arctium species was identified and determined. The quantitative content of the amount of organic acids, ascorbic acid, polysaccharides, total polyphenols, and amount of hydroxycinnamic acids in the roots of A. tomentosum and A. minus in comparison with the root of A. Lappa was established, and these indicators are comparable.

Conclusions. For the first time, a comparative pharmacognostical study of the roots of A. tomentosum and A. minus in comparison with the root of A. lappa was carried out which showed minor differences between the roots of these Arctium species and confirms their interchangeability at this stage, especially when harvesting wild plant raw materials, when identification of the species at the botanical level is impossible

Author Biographies

Tetiana Oproshanska, National University of Pharmacy

PhD, Assistant Professor

Department Pharmaceutical Technology, Standardization and Certification of Drug

Olga Khvorost, National University of Pharmacy

Doctor of Pharmaceutical Sciences, Professor

Department of Pharmacognosy and Nutriciology

Kateryna Skrebtsova, National University of Pharmacy

PhD, Assistant

Department of Pharmacognosy and Nutriciology

Lesia Savchenko, Gladpharm LLC

Doctor of Pharmaceutical Sciences, Associate Professor, Specialist in Pharmacovigilance

Natalya Fizor, Odesa National Medical University

PhD, Associate Professor

Department of Pharmaceutical Chemistry and Drug Technology

References

  1. Genus Arctium L. Who plant list. Available at: https://wfoplantlist.org/taxon/wfo-4000002920-2023-12?page=1
  2. Sokol, O. V. (2021). Vydy rodu Arctium L. v Ukraini: biolohichni osoblyvosti ta perspektyvy vvedennia v kulturu. [PhD dissertation; Natsionalnyi botanichnyi sad imeni M. M. Hryshka]. Available at: http://www.nbg.kiev.ua/upload/spetsrada/30042021/Sokol_diser.pdf
  3. Wang, D., Bădărau, A. S., Swamy, M. K., Shaw, S., Maggi, F., da Silva, L. E. et al. (2019). Arctium Species Secondary Metabolites Chemodiversity and Bioactivities. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00834
  4. Errico, M., Coelho, J. A. P., Stateva, R. P., Christensen, K. V., Bahij, R., Tronci, S. (2023). Brewer’s Spent Grain, Coffee Grounds, Burdock, and Willow–Four Examples of Biowaste and Biomass Valorization through Advanced Green Extraction Technologies. Foods, 12 (6), 1295. https://doi.org/10.3390/foods12061295
  5. Li, Z., Zhang, Z., Ding, J., Li, Y., Cao, G., Zhu, L. et al. (2024). Extraction, structure and bioactivities of polysaccharide from root of Arctium lappa L.: A review. International Journal of Biological Macromolecules, 265, 131035. https://doi.org/10.1016/j.ijbiomac.2024.131035
  6. Song, Y., Yang, Y., Xu, L., Bian, C., Xing, Y., Xue, H. et al. (2023). The burdock database: a multi-omic database for Arctium lappa, a food and medicinal plant. BMC Plant Biology, 23 (1). https://doi.org/10.1186/s12870-023-04092-3
  7. López‐Vinyallonga, S., Arakaki, M., Garcia‐Jacas, N., Susanna, A., Gitzendanner, M. A., Soltis, D. E., Soltis, P. S. (2010). Isolation and characterization of novel microsatellite markers for Arctium minus (Compositae). American Journal of Botany, 97 (2). https://doi.org/10.3732/ajb.0900376
  8. Wu, K.-C., Weng, H.-K., Hsu, Y.-S., Huang, P.-J., Wang, Y.-K. (2020). Aqueous extract of Arctium lappa L. root (burdock) enhances chondrogenesis in human bone marrow-derived mesenchymal stem cells. BMC Complementary Medicine and Therapies, 20 (1). https://doi.org/10.1186/s12906-020-03158-1
  9. Annunziata, G., Barrea, L., Ciampaglia, R., Cicala, C., Arnone, A., Savastano, S. et al. (2019). Arctium lappa contributes to the management of type 2 diabetes mellitus by regulating glucose homeostasis and improving oxidative stress: A critical review of in vitro and in vivo animal‐based studies. Phytotherapy Research, 33 (9), 2213–2220. https://doi.org/10.1002/ptr.6416
  10. Li, M., Jiang, H., Wang, Y., Xu, Z., Xu, H., Chen, Y. et al. (2023). Effect of arctigenin on neurological diseases: A review. Journal of Ethnopharmacology, 315, 116642. https://doi.org/10.1016/j.jep.2023.116642
  11. Moro, T. M. A., T. P. S. Clerici, M. (2021). Burdock (Arctium lappa L) roots as a source of inulin-type fructans and other bioactive compounds: Current knowledge and future perspectives for food and non-food applications. Food Research International, 141, 109889. https://doi.org/10.1016/j.foodres.2020.109889
  12. Zeng, F., Li, Y., Zhang, X., Shen, L., Zhao, X., Beta, T. et al. (2024). Immune regulation and inflammation inhibition of Arctium lappa L. polysaccharides by TLR4/NF-κB signaling pathway in cells. International Journal of Biological Macromolecules, 254, 127700. https://doi.org/10.1016/j.ijbiomac.2023.127700
  13. Fischer, S. P. M., Brusco, I., Camponogara, C., Piana, M., Faccin, H., Gobo, L. A. et al. (2017). Arctium minus crude extract presents antinociceptive effect in a mice acute gout attack model. Inflammopharmacology, 26 (2), 505–519. https://doi.org/10.1007/s10787-017-0384-6
  14. Erdemoglu, N., Turan, N. N., Akkol, E. K., Sener, B., Abacıoglu, N. (2009). Estimation of anti-inflammatory, antinociceptive and antioxidant activities on Arctium minus (Hill) Bernh. ssp. minus. Journal of Ethnopharmacology, 121 (2), 318–323. https://doi.org/10.1016/j.jep.2008.11.009
  15. İlgün, S., Karatoprak, G. Ş., Polat, D. Ç., Şafak, E. K., Yıldız, G., Küpeli Akkol, E., Sobarzo-Sánchez, E. (2022). Phytochemical Composition and Biological Activities of Arctium minus (Hill) Bernh.: A Potential Candidate as Antioxidant, Enzyme Inhibitor, and Cytotoxic Agent. Antioxidants, 11 (10), 1852. https://doi.org/10.3390/antiox11101852
  16. Malaník, M., Farková, V., Křížová, J., Kresová, A., Šmejkal, K., Kašparovský, T., Dadáková, K. (2024). Comparison of Metabolic Profiles of Fruits of Arctium lappa, Arctium minus, and Arctium tomentosum. Plant Foods for Human Nutrition, 79 (2), 497–502. https://doi.org/10.1007/s11130-024-01175-w
  17. Arctii radix – herbal medicinal product. European Medicine Agency. Available at: https://www.ema.europa.eu/en/medicines/herbal/arctii-radix#documents
  18. Derzhavna farmakopeia Ukrainy Dop. 1 (2.0). (2016). Kharkiv: Derzhavne pidpryiemstvo «Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv», 360.
  19. European Pharmacopoeia 11 ed. Supplement 11.3. Available at: https://pheur.edqm.eu/home
  20. Derzhavna farmakopeia Ukrainy Dop. 7.2 (2.0). (2024). Kharkiv: Derzhavne pidpryiemstvo «Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv».
  21. Oproshanska, T., Khvorost, O., Batiuchenko, I., Ivanauskas, L., Belikova, A. (2022). Establishment of quality indicators of promising plant raw materials – underground organs of Rumex confertus willd. ScienceRise: Pharmaceutical Science, 3 (37), 40–47. https://doi.org/10.15587/2519-4852.2022.259583
  22. Derzhavna farmakopeia Ukrainy (2.0). (2015). Kharkiv: Derzhavne pidpryiemstvo «Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv».
  23. Oproshanskaia T. V. (2015). Izuchenie kolichestvennogo soderzhaniia zhirnykh kislot v trave Bidens tripartita L. Khimiia prirodnykh soedinenii, 5, 809.
  24. Derzhavna farmakopeia Ukrainy (2.0). (2014). Kharkiv: Derzhavne pidpryiemstvo «Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv».
  25. Derzhavna farmakopeia Ukrainy Dop. 5 (2.0). (2021). Kharkiv: Derzhavne pidpryiemstvo «Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv».
  26. Oproshanska, T. V. (2009). Farmakohnostychne vyvchennia roslyn rodu Arctium ta stvorennia substantsii na ii osnovi. [PhD theses; Natsionalnyi farmatsevtychnyi universytet].
  27. Fritz, E., Saukel, J. (2011). Anatomy of Subterranean Organs of Medicinally Used Cardueae and Related Species and its Value for Discrimination. Scientia Pharmaceutica, 79 (1), 157–174. https://doi.org/10.3797/scipharm.1010-05
  28. Yosri, N., Alsharif, S. M., Xiao, J., Musharraf, S. G., Zhao, C., Saeed, A. et al. (2023). Arctium lappa (Burdock): Insights from ethnopharmacology potential, chemical constituents, clinical studies, pharmacological utility and nanomedicine. Biomedicine & Pharmacotherapy, 158, 114104. https://doi.org/10.1016/j.biopha.2022.114104
  29. Zhong, Y., Lee, K., Deng, Y., Ma, Y., Chen, Y., Li, X. et al. (2019). Arctigenin attenuates diabetic kidney disease through the activation of PP2A in podocytes. Nature Communications, 10 (1). https://doi.org/10.1038/s41467-019-12433-w
  30. Yosri, N., Alsharif, S. M., Xiao, J., Musharraf, S. G., Zhao, C., Saeed, A. et al. (2023). Arctium lappa (Burdock): Insights from ethnopharmacology potential, chemical constituents, clinical studies, pharmacological utility and nanomedicine. Biomedicine & Pharmacotherapy, 158, 114104. https://doi.org/10.1016/j.biopha.2022.114104
  31. Ma, K., Sheng, W., Gao, R., Feng, J., Huang, W., Cui, L. et al. (2022). Ethanolic extract of root from Arctium lappa L ameliorates obesity and hepatic steatosis in rats by regulating the AMPK/ACC/CPT-1 pathway. Journal of Food Biochemistry, 46, e14455. https://doi.org/10.1111/jfbc.14455
  32. Skowrońska, W., Granica, S., Dziedzic, M., Kurkowiak, J., Ziaja, M., Bazylko, A. (2021). Arctium lappa and Arctium tomentosum, Sources of Arctii radix: Comparison of Anti-Lipoxygenase and Antioxidant Activity as well as the Chemical Composition of Extracts from Aerial Parts and from Roots. Plants, 10 (1), 78. https://doi.org/10.3390/plants10010078
Comparative pharmacognostic study of the roots of the most common species of plants of the genus arctium

Downloads

Published

2024-06-30

How to Cite

Oproshanska, T., Khvorost, O., Skrebtsova, K., Savchenko, L., & Fizor, N. (2024). Comparative pharmacognostic study of the roots of the most common species of plants of the genus arctium. ScienceRise: Pharmaceutical Science, (3 (49), 54–62. https://doi.org/10.15587/2519-4852.2024.307262

Issue

Section

Pharmaceutical Science