Study of the effect of propylene glycol on the properties of poloxamer 338 solutions

Authors

  • Oleksii Liapunov State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0001-6103-7489
  • Olena Bezugla State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine, Ukraine
  • Nikolay Lyapunov State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0002-5036-8255
  • Oleksii Lysokobylka State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0003-2071-9955

DOI:

https://doi.org/10.15587/2519-4852.2024.313294

Keywords:

poloxamer 338 (Р338), propylene glycol (PG), solution, gel, viscosity, micelle, spin probe, EPR spectrum, spectrum parameters

Abstract

The aim. Study of the characteristics of 20 % solutions of poloxamer 338 (P338) in water and mixed solvents water – propylene glycol (PG) at various temperatures using rotational viscometry and the spin probe method.

Materials and methods. 20 % m/m solutions of P338 in water and water – PG mixtures were the objects of research. The solutions were studied by rotational viscometry at 25 °С, 32 °С і 37 °С; the flow behaviour, low-yield stress (t0), hysteresis area (SN) and dynamic or apparent viscosity (η) were determined. Spin probes based on fatty acids, which differ in molecular structure, solubility, and radical localisation, were added to the solutions. Electron paramagnetic resonance (EPR) spectra was obtained to determine their type and parameters.

Results. Depending on the content, PG affects the rheological properties of 20 % P338 solution. The ability of this solution to undergo thermally induced sol-gel transitions, resulting in the formation of gels with plastic flow behaviour at temperatures of 32 °C and 37 °C, is maintained at PG content of up to 20 %. At 37 °C and a 30 % PG content, an atypical thixotropic gel is formed. The rheological characteristics of gels containing 10-20 % PG at 32 °C and 37 °C are higher than those of gels without PG. The increase in the PG concentration from 0 to 40 % generally has little effect on the rotational correlation times (τ) and values of the order parameter (S) of the spin probes. In the case of the ammonium salt of 5-doxylstearic acid (5-DSA NH4 salt), the anisotropic EPR spectra at a PG concentration of 40 % undergoes a transformation, becoming a triplet. This coincides with the loss of the ability of 20 % P338 solutions to thermally induced sol ↔ gel transitions. An increase in the concentration of PG (in contrast to ethanol) does not lead to the solvation of P338 micelle cores by the dispersion medium. The transformation of the EPR spectrum of the 5-DSA NH4 salt into a triplet is probably the result of the interaction between PG and the hydrophilic shell of micelles through the formation of hydrogen bonds.

Conclusions. The rheological properties of 20 % P338 solution are affected by the PG, depending on its content. The P338 solutions can undergo a thermally induced sol ↔ gel transition, provided that the PG content does not exceed 30 %. A correlation has been identified between alterations in the rheological properties of 20 % P338 solution and the corresponding change in the types of EPR spectra observed for the 5-DSA NH4 salt, namely a transition from anisotropic spectra to triplet. As the PG content in the P338 solution increases up to 40 %, the solvation of micelle cores by the dispersion medium does not occur. It may be posited that the alteration in the structure of P338 micelles is a consequence of the interaction between PG and their hydrophilic shell

Supporting Agency

  • National Academy of Sciences of Ukraine within the framework of the project «Study of dispersed systems as bases-vehicles for development of medicinal products» (0124U003095).

Author Biographies

Oleksii Liapunov, State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine

PhD, Researcher

Laboratory of Technology and Analysis of Medicinal Products

Institute of Chemistry of Functional Materials

Olena Bezugla, State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine

PhD, Senior Researcher, Head of Laboratory

Laboratory of Technology and Analysis of Medicinal Products

Institute of Chemistry of Functional Materials

Nikolay Lyapunov, State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine

Doctor of Pharmaceutical Sciences, Professor, Leading Researcher

Laboratory of Technology and Analysis of Medicinal Products

Institute of Chemistry of Functional Materials

Oleksii Lysokobylka, State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine

Junior Researcher

Laboratory of Technology and Analysis of Medicinal Products

Institute of Chemistry of Functional Materials

References

  1. The European Pharmacopoeia (2022). European Directorate for the Quality of Medicines & HealthCare of the Council of Europe. Strasbourg: Sedex, 6105.
  2. Sheskey, P. J., Hancock, B. C., Moss, G. P., Goldfarb, D. J. (Eds.) (2020). Handbook of Pharmaceutical Excipients. London: Pharm. Press, 1296.
  3. Bodratti, A., Alexandridis, P. (2018). Formulation of Poloxamers for Drug Delivery. Journal of Functional Biomaterials, 9 (1), 11. https://doi.org/10.3390/jfb9010011
  4. Alexandridis, P., Hatton, T. A. (1994). Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 96 (1-2), 1–46. https://doi.org/10.1016/0927-7757(94)03028-x
  5. Alexandridis, P., Holzwarth, J. F., Hatton, T. A. (1994). Micellization of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Copolymers in Aqueous Solutions: Thermodynamics of Copolymer Association. Macromolecules, 27 (9), 2414–2425. https://doi.org/10.1021/ma00087a009
  6. Cabana, A., Aı̈t-Kadi, A., Juhász, J. (1997). Study of the Gelation Process of Polyethylene Oxidea–Polypropylene Oxideb–Polyethylene OxideaCopolymer (Poloxamer 407) Aqueous Solutions. Journal of Colloid and Interface Science, 190 (2), 307–312. https://doi.org/10.1006/jcis.1997.4880
  7. Prud’homme, R. K., Wu, G., Schneider, D. K. (1996). Structure and Rheology Studies of Poly(oxyethylene−oxypropylene−oxyethylene) Aqueous Solution. Langmuir, 12 (20), 4651–4659. https://doi.org/10.1021/la951506b
  8. Lyapunov, N., Bezuglaya, E., Liapunov, O., Lysokobylka, O. (2023). Study of aqueous solutions of poloxamers by rotational viscometry and spin probe method. ScienceRise: Pharmaceutical Science, 4 (44), 4–18. https://doi.org/10.15587/2519-4852.2023.285933
  9. Cook, M. T., Brown, M. B. (2018). Polymeric gels for intravaginal drug delivery. Journal of Controlled Release, 270, 145–157. https://doi.org/10.1016/j.jconrel.2017.12.004
  10. Russo, E., Villa, C. (2019). Poloxamer Hydrogels for Biomedical Applications. Pharmaceutics, 11 (12), 671. https://doi.org/10.3390/pharmaceutics11120671
  11. Zhang, T., Chen, S., Dou, H., Liu, Q., Shu, G., Lin, J. et al. (2021). Novel glucosamine-loaded thermosensitive hydrogels based on poloxamers for osteoarthritis therapy by intra-articular injection. Materials Science and Engineering: C, 118, 111352. https://doi.org/10.1016/j.msec.2020.111352
  12. Soliman, K. A., Ullah, K., Shah, A., Jones, D. S., Singh, T. R. R. (2019). Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications. Drug Discovery Today, 24 (8), 1575–1586. https://doi.org/10.1016/j.drudis.2019.05.036
  13. Ivanova, R., Alexandridis, P., Lindman, B. (2001). Interaction of poloxamer block copolymers with cosolvents and surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 183–185, 41–53. https://doi.org/10.1016/s0927-7757(01)00538-6
  14. Ivanova, R., Lindman, B., Alexandridis, P. (2002). Effect of Pharmaceutically Acceptable Glycols on the Stability of the Liquid Crystalline Gels Formed by Poloxamer 407 in Water. Journal of Colloid and Interface Science, 252 (1), 226–235. https://doi.org/10.1006/jcis.2002.8417
  15. Liapunov, O., Bezuglaya, E., Liapunova, A., Lysokobylka, O. (2024). Study of the effect of ethanol on the properties of poloxamer 338 solutions by rotational viscometry and spin probe method. ScienceRise: Pharmaceutical Science, 3 (49), 13–26. https://doi.org/10.15587/2519-4852.2024.306365
  16. Bezuglaya, E. P., Lyapunova, A. N., Krasnoperova, A. P. (2013). Water–Hexylene Glycol System as a Potential Medicinal Base. Pharmaceutical Chemistry Journal, 47 (5), 281–286. https://doi.org/10.1007/s11094-013-0943-0
  17. Khattab, I. S., Bandarkar, F., Khoubnasabjafari, M., Jouyban, A. (2017). Density, viscosity, surface tension, and molar volume of propylene glycol + water mixtures from 293 to 323 K and correlations by the Jouyban–Acree model. Arabian Journal of Chemistry, 10, S71–S75. https://doi.org/10.1016/j.arabjc.2012.07.012
  18. Bielawska, M., Chodzińska, A., Jańczuk, B., Zdziennicka, A. (2013). Determination of CTAB CMC in mixed water+short-chain alcohol solvent by surface tension, conductivity, density and viscosity measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 424, 81–88. https://doi.org/10.1016/j.colsurfa.2013.02.017
  19. Makarov, D. M., Egorov, G. I., Kolker, A. M. (2016). Temperature and composition dependences of volumetric properties of (water + 1,2-propanediol) binary system. Journal of Molecular Liquids, 222, 656–662. https://doi.org/10.1016/j.molliq.2016.07.095
  20. Prajapati, P. M., Pandit, T. R., Vankar, H. P., Rana, V. A. (2021). Physical and acoustical properties of paracetamol in binary mixtures of water + propylene glycol. Materials Today: Proceedings, 47, 632–634. https://doi.org/10.1016/j.matpr.2020.11.756
  21. George, J., Sastry, N. V. (2003). Densities, Dynamic Viscosities, Speeds of Sound, and Relative Permittivities for Water + Alkanediols (Propane-1,2- and -1,3-diol and Butane-1,2-, -1,3-, -1,4-, and -2,3-Diol) at Different Temperatures. Journal of Chemical & Engineering Data, 48 (6), 1529–1539. https://doi.org/10.1021/je0340755
  22. Sun, T., Teja, A. S. (2004). Density, Viscosity and Thermal Conductivity of Aqueous Solutions of Propylene Glycol, Dipropylene Glycol, and Tripropylene Glycol between 290 K and 460 K. Journal of Chemical & Engineering Data, 49 (5), 1311–1317. https://doi.org/10.1021/je049960h
  23. Zhou, Y., Hu, K., Shen, J., Wu, X., Cheng, G. (2009). Microstructure variations with concentration of propylene glycol–water solution probed by NMR. Journal of Molecular Structure, 921 (1-3), 150–155. https://doi.org/10.1016/j.molstruc.2008.12.050
  24. Xu, Y., Xing, L., Cao, X., Li, D., Men, Z., Li, Z. et al. (2023). Hydrogen bonding network dynamics of 1,2-propanediol-water binary solutions by Raman spectroscopy and stimulated Raman scattering. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 284, 121825. https://doi.org/10.1016/j.saa.2022.121825
  25. Bezuhlaia, E. P., Melnykova, E. N., Zhemerova, E. H., Liapunov, A. N., Zynchenko, Y. A. (2016). Efficacy of antimicrobial preservation of certain hydrophilic non-aqueous solvents in aqueous solutions and gels. Farmakom, 1, 51–59.
  26. Bendas, B., Schmalfuβ, U., Neubert, R. (1995). Influence of propylene glycol as cosolvent on mechanisms of drug transport from hydrogels. International Journal of Pharmaceutics, 116 (1), 19–30. https://doi.org/10.1016/0378-5173(94)00267-9
  27. Wiegand, T. J. (2024). Propylene glycol. Encyclopedia of Toxicology, 981–986. https://doi.org/10.1016/b978-0-12-824315-2.01179-9
  28. Bezugla, O. P., Lyapunov, M. O., Zinchenko, I. O., Lisokobilka, O. A., Liapunova, A. M. (2022). Modeling of processes of solvent diffusion from ointment bases using in vitro experiments. Functional materials, 29 (4), 553–558. https://doi.org/10.15407/fm29.04.553
  29. Nemati, A., Rezaei, H., Poturcu, K., Hanaee, J., Jouyban, A., Zhao, H., Rahimpour, E. (2023). Effect of temperature and propylene glycol as a cosolvent on dissolution of clotrimazole. Annales Pharmaceutiques Françaises, 81 (2), 258–266. https://doi.org/10.1016/j.pharma.2022.10.001
  30. García, O. E., Martínez, F., Peña, Á., Jouyban, A., Acree, W. E. (2024). Solubility of atenolol in aqueous propylene glycol mixtures revisited: IKBI preferential solvation analysis. Physics and Chemistry of Liquids, 62 (5), 527–535. https://doi.org/10.1080/00319104.2024.2329917
  31. Zeng, A.-G., Pang, X.-L., Wu, N., Wang, D., Nan, G.-J., Yang, G.-D., Bian, X.-L. (2014). Solubility of daidzein in propylene glycol plus water cosolvent mixtures. Fluid Phase Equilibria, 366, 127–133. https://doi.org/10.1016/j.fluid.2013.12.024
  32. Fathi-Azarjbayjani, A., Mabhoot, A., Martínez, F., Jouyban, A. (2016). Modeling, solubility, and thermodynamic aspects of sodium phenytoin in propylene glycol–water mixtures. Journal of Molecular Liquids, 219, 68–73. https://doi.org/10.1016/j.molliq.2016.02.089
  33. Jouyban-Gharamaleki, V., Rahimpour, E., Hemmati, S., Martinez, F., Jouyban, A. (2020). Mesalazine solubility in propylene glycol and water mixtures at various temperatures using a laser monitoring technique. Journal of Molecular Liquids, 299, 112136. https://doi.org/10.1016/j.molliq.2019.112136
  34. Muñoz, M. M., Rodríguez, C. J., Delgado, D. R., Peña, M. Á., Jouyban, A., Martínez, F. (2015). Solubility and saturation apparent specific volume of some sodium sulfonamides in propylene glycol + water mixtures at 298.15 K. Journal of Molecular Liquids, 211, 192–196. https://doi.org/10.1016/j.molliq.2015.07.016
  35. del Mar Muñoz, M., Delgado, D. R., Peña, M. Á., Jouyban, A., Martínez, F. (2015). Solubility and preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in propylene glycol+water mixtures at 298.15K. Journal of Molecular Liquids, 204, 132–136. https://doi.org/10.1016/j.molliq.2015.01.047
  36. Assis, G. P., Derenzo, S., Bernardo, A. (2022). Solid-liquid equilibrium of nicotinamide in water-ethanol and water-propylene glycol mixtures. Journal of Molecular Liquids, 345, 117799. https://doi.org/10.1016/j.molliq.2021.117799
  37. Assis, G. P., Garcia, R. H. L., Derenzo, S., Bernardo, A. (2021). Solid-liquid equilibrium of paracetamol in water-ethanol and water-propylene glycol mixtures. Journal of Molecular Liquids, 323, 114617. https://doi.org/10.1016/j.molliq.2020.114617
  38. Pirhayati, F. H., Shayanfar, A., Rahimpour, E., Barzegar-Jalali, M., Martinez, F., Jouyban, A. (2017). Solubility of sildenafil citrate in propylene glycol + water mixtures at various temperatures. Physics and Chemistry of Liquids, 56 (4), 508–517. https://doi.org/10.1080/00319104.2017.1354376
  39. Alkilani, A., McCrudden, M. T., Donnelly, R. (2015). Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum. Pharmaceutics, 7 (4), 438–470. https://doi.org/10.3390/pharmaceutics7040438
  40. Berliner, L. (Ed.) (1979). Metod spinovykh metok. Teoriia i primenenie. Moscow: Mir, 635.
  41. Likhtenshtein, G. I. (1974). Metod spinovykh zondov v molekuliarnoi biologii. Moscow: Nauka, 256.
  42. Kuznetcov, A. N. (1976). Metod spinovogo zonda (Osnovy i primenenie). Moscow: Nauka, 210.
  43. Bezuglaya, E., Lyapunov, N., Chebanov, V., Liapunov, O. (2022). Study of the formation of micelles and their structure by the spin probe method. ScienceRise: Pharmaceutical Science, 4 (38), 4–18. https://doi.org/10.15587/2519-4852.2022.263054
  44. Bezuglaya, E., Krasnopyorova, A., Liapunova, A., Zinchenko, I., Lyapunov, N., Sytnik, O. (2023). Influence of physicochemical properties and structure of mixed solvents propylene glycol – macrogol 400 on their in vitro release. ScienceRise: Pharmaceutical Science, 1 (41), 4–13. https://doi.org/10.15587/2519-4852.2023.274468
Study of the effect of propylene glycol on the properties of poloxamer 338 solutions

Downloads

Published

2024-10-31

How to Cite

Liapunov, O., Bezugla, O., Lyapunov, N., & Lysokobylka, O. (2024). Study of the effect of propylene glycol on the properties of poloxamer 338 solutions. ScienceRise: Pharmaceutical Science, (5 (51), 15–27. https://doi.org/10.15587/2519-4852.2024.313294

Issue

Section

Pharmaceutical Science