Synthesis and biological activity of 2-arylidene-5,6-dihydroimidazo[2,1-b]thiazoles and 6,7-dihydro-5h-[1,3]thiazolo[3,2-a]pyrimidines
DOI:
https://doi.org/10.15587/2519-4852.2025.326521Keywords:
imidazo[2,1-b]thiazoles, thiazolo[3,2-a]pyrimidines, Knoevenagel condensation, antimicrobial activity, antioxidant activity, DPPHAbstract
The aim. The present study is devoted to searching for potential biologically active agents among functionalized imidazo[2,1-b]thiazoles and thiazolo[3,2-a]pyrimidines.
Materials and methods. The interaction of preparatively available 5,6-dihydroimidazo[2,1-b]thiazolone and 6,7-dihydro-2H-thiazolo[3,2-a]pyrimidinone with several substituted benzaldehydes in boiling acetic acid in the presence of anhydrous sodium acetate leads to new 2-arylidene-substituted 5,6-dihydroimidazo[2,1-b]thiazoles and 6,7-dihydro-5H-[1,3]thiazolo[3,2-a]pyrimidines as potential pharmacological agents. Their antimicrobial activity was studied using the micromethod of two-fold serial dilutions in a liquid nutrient medium. The antioxidant activity of the synthesized compounds was evaluated using a DPPH assay.
Results. A library of 2-arylidene-5,6-dihydroimidazo[2,1-b]thiazolone and 6,7-dihydro-2H-thiazolo[3,2-a]pyrimidinone was synthesized by condensation of 5,6-dihydroimidazo[2,1-b]thiazoles and 6,7-dihydro-5H-[1,3]thiazolo[3,2-a]pyrimidines with series of aromatic aldehydes. Pharmacological in vitro screening results revealed that synthesized compounds possess moderate antimicrobial activity with MBC and MFC values of 31.25-62.5 mg/mL. While studying the antioxidant activity, it was found that all derivatives effectively inhibited DPPH radicals with an inhibition rate of 42.3-94.4 %. The best antiradical effect was observed for the molecule's derivatives containing 3-methoxy-4-hydroxy- or 2-hydroxyphenylmethylidene fragments.
Conclusions. It was found that the Knevenagel condensation of 5,6-dihydroimidazo[2,1-b]thiazolone and 6,7-dihydro-2H-thiazolo[3,2-a]pyrimidinone with aromatic aldehydes is a convenient approach for structure modification and optimization using pharmacophore fragments for these types of heterocycle. The synthesized arylidene derivatives are characterized by moderate antimicrobial and good antioxidant activity in vitro models
References
- Tojo, S., Kohno, T., Tanaka, T., Kamioka, S., Ota, Y., Ishii, T. et al. (2014). Crystal Structures and Structure–Activity Relationships of Imidazothiazole Derivatives as IDO1 Inhibitors. ACS Medicinal Chemistry Letters, 5 (10), 1119–1123. https://doi.org/10.1021/ml500247w
- Fascio, M. L., Errea, M. I., D’Accorso, N. B. (2015). Imidazothiazole and related heterocyclic systems. Synthesis, chemical and biological properties. European Journal of Medicinal Chemistry, 90, 666–683. https://doi.org/10.1016/j.ejmech.2014.12.012
- Kamal, A., Kashi Reddy, M., Viswanath, A. (2013). The design and development of imidazothiazole–chalcone derivatives as potential anticancer drugs. Expert Opinion on Drug Discovery, 8 (3), 289–304. https://doi.org/10.1517/17460441.2013.758630
- Keshari, A. K., Singh, A. K., Saha, S. (2017). Bridgehead Nitrogen Thiazolo[3,2-a]pyrimidine: A Privileged Structural Framework in Drug Discovery. Mini-Reviews in Medicinal Chemistry, 17 (15), 1488–1499. https://doi.org/10.2174/1389557517666170216142113
- Wu, F. Y., Luo, Y., Hu, C. B. (2018). Recent progress in the synthesis of thiazolo[3,2-a]pyrimidine compounds. IOP Conference Series: Materials Science and Engineering, 292, 012038. https://doi.org/10.1088/1757-899x/292/1/012038
- Amarouch, H., Loiseau, P. R., Bacha, C., Caujolle, R., Payard, M. et al. (1987). Imidazo[2,1-b]thiazoles: analogues du lévamisole. European Journal of Medicinal Chemistry, 22 (5), 463–466. https://doi.org/10.1016/0223-5234(87)90037-7
- Montalban-Bravo, G., Jabbour, E., Chien, K., Hammond, D., Short, N., Ravandi, F. et al. (2024). Phase 1 study of azacitidine in combination with quizartinib in patients with FLT3 or CBL mutated MDS and MDS/MPN. Leukemia Research, 142, 107518. https://doi.org/10.1016/j.leukres.2024.107518
- Leysen, J. E., Van Gompel, P., Gommeren, W., Woestenborghs, R., & Janssen, P. A. J. (1986). Down regulation of serotonin-S2 receptor sites in rat brain by chronic treatment with the serotonin-S2 antagonists: ritanserin and setoperone. Psychopharmacology, 88 (4), 434–444. https://doi.org/10.1007/bf00178504
- Cole, D. C., Stock, J. R., Lennox, W. J., Bernotas, R. C., Ellingboe, J. W., Boikess, S. et al. (2007). Discovery of N1-(6-Chloroimidazo[2,1-b][1,3]thiazole-5-sulfonyl)tryptamine as a Potent, Selective, and Orally Active 5-HT6Receptor Agonist. Journal of Medicinal Chemistry, 50 (23), 5535–5538. https://doi.org/10.1021/jm070521y
- Da Pozzo, E., La Pietra, V., Cosimelli, B., Da Settimo, F., Giacomelli, C., Marinelli, L. et al. (2014). p53 Functional Inhibitors Behaving Like Pifithrin-β Counteract the Alzheimer Peptide Non-β-amyloid Component Effects in Human SH-SY5Y Cells. ACS Chemical Neuroscience, 5 (5), 390–399. https://doi.org/10.1021/cn4002208
- Krueger, J. G., Suárez-Fariñas, M., Cueto, I., Khacherian, A., Matheson, R., Parish, L. C. et al. (2015). A Randomized, Placebo-Controlled Study of SRT2104, a SIRT1 Activator, in Patients with Moderate to Severe Psoriasis. PLOS ONE, 10 (11), e0142081. https://doi.org/10.1371/journal.pone.0142081
- Dianat, S., Moghimi, S., Mahdavi, M., Nadri, H., Moradi, A., Firoozpour, L. et al. (2016). Quinoline-based imidazole-fused heterocycles as new inhibitors of 15-lipoxygenase. Journal of Enzyme Inhibition and Medicinal Chemistry, 31 (sup3), 205–209. https://doi.org/10.1080/14756366.2016.1206087
- Serafini, M., Torre, E., Aprile, S., Massarotti, A., Fallarini, S., Pirali, T. (2019). Synthesis, Docking and Biological Evaluation of a Novel Class of Imidazothiazoles as IDO1 Inhibitors. Molecules, 24 (10), 1874. https://doi.org/10.3390/molecules24101874
- Jin, C.-H., Jun, K.-Y., Lee, E., Kim, S., Kwon, Y., Kim, K., Na, Y. (2014). Ethyl 2-(benzylidene)-7-methyl-3-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate analogues as a new scaffold for protein kinase casein kinase 2 inhibitor. Bioorganic & Medicinal Chemistry, 22 (17), 4553–4565. https://doi.org/10.1016/j.bmc.2014.07.037
- Nobe, K., Miyatake, M., Nobe, H., Sakai, Y., Takashima, J., Momose, K. (2004). Novel diacylglycerol kinase inhibitor selectively suppressed an U46619‐induced enhancement of mouse portal vein contraction under high glucose conditions. British Journal of Pharmacology, 143 (1), 166–178. https://doi.org/10.1038/sj.bjp.0705910
- Saliyeva, L., Holota, S., Grozav, G., Yakovychuk, N., Litvinchuk, M., Slyvka, N., Vovk, M. (2022). Synthesis and Evaluation of Antimicrobial and Anti-inflammatory Activity of 6-aryliden-2-methyl-2,3-dihydroimidazo[2,1-b][1,3]thiazoles. Biointerface Research in Applied Chemistry, 12 (1), 292–303. https://doi.org/10.33263/BRIAC121.292303
- Ye, X., Zhou, W., Li, Y., Sun, Y., Zhang, Y., Ji, H., Lai, Y. (2010). Darbufelone, a novel anti-inflammatory drug, induces growth inhibition of lung cancer cells both in vitro and in vivo. Cancer Chemotherapy and Pharmacology, 66 (2), 277–285. https://doi.org/10.1007/s00280-009-1161-z
- Kouzi, O., Pontiki, E., Hadjipavlou-Litina, D. (2019). 2-Arylidene-1-indandiones as Pleiotropic Agents with Antioxidant and Inhibitory Enzymes Activities. Molecules, 24 (23), 4411. https://doi.org/10.3390/molecules24234411
- Jain, S., Kumar, A., Saini, D. (2018). Novel arylidene derivatives of quinoline based thiazolidinones: Synthesis, in vitro, in vivo and in silico study as antimalarials. Experimental Parasitology, 185, 107–114. https://doi.org/10.1016/j.exppara.2018.01.015
- Rajagopalan, P., Dera, A., Abdalsamad, M. R., C. Chandramoorthy, H. (2019). Rational combinations of indirubin and arylidene derivatives exhibit synergism in human non‐small cell lung carcinoma cells. Journal of Food Biochemistry, 43 (7), e12861. https://doi.org/10.1111/jfbc.12861
- Yakovychuk, N. D., Deyneka, S. Y., Grozav, A. M., Humenna, A. V., Popovych, V. B., Djuiriak, V. S. (2018). Аntifungal activity of 5-(2-nitrovinyl) imidazoles and their derivatives against the causative agents of vulvovaginal candidiasis. Regulatory Mechanisms in Biosystems, 9 (3), 369–373. https://doi.org/10.15421/021854
- Brand-Williams, W., Cuvelier, M. E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT – Food Science and Technology, 28 (1), 25–30. https://doi.org/10.1016/s0023-6438(95)80008-5
- Urbano, M., Guerrero, M., Velaparthi, S., Crisp, M., Chase, P., Hodder, P., Schaeffer, M.-T. et al. (2011). Discovery, synthesis and SAR analysis of novel selective small molecule S1P4-R agonists based on a (2Z,5Z)-5-((pyrrol-3-yl)methylene)-3-alkyl-2-(alkylimino)thiazolidin-4-one chemotype. Bioorganic & Medicinal Chemistry Letters, 21 (22), 6739–6745. https://doi.org/10.1016/j.bmcl.2011.09.049
- Kushakova, P. M., Yulisova, A. I., Ramsh, S. M., Garabadgiu, A. V. (2006). New data on the alkylation of cyclic thioureas with á-halocarboxylic acids and their esters. 2. Alkylation of tetrahydropyrimidine-2(1h)-thione and 5,5-dimethyltetrahydropyrimidine-2(1h)-thione. Chemistry of Heterocyclic Compounds, 42 (4), 520–529. https://doi.org/10.1007/s10593-006-0120-4
- Li, X., Zheng, A., Liu, B., Yu, X., Yi, P. (2010). Synthesis of Novel Spiro Pyrrolidine and Pyrrolizine Derivatives by 1,3‐Dipolar Cycloaddition. Chinese Journal of Chemistry, 28 (7), 1207–1211. https://doi.org/10.1002/cjoc.201090209
- Yan, J., Fu, X., Li, W. (2017). Synthesis of Spiro Thiazolo[3,2-a]Pyrimidine-Tetrahydrothiophenes via Sulfa-Michael/Aldol Cascade Reactions. Journal of Chemical Research, 41 (12), 722–724. https://doi.org/10.3184/174751917x15125690124282
- Hecht, D. W. (2004). Prevalence of Antibiotic Resistance in Anaerobic Bacteria: Worrisome Developments. Clinical Infectious Diseases, 39 (1), 92–97. https://doi.org/10.1086/421558
- Moore, B. S., Carter, G. T., Brönstrup, M. (2017). Editorial: Are natural products the solution to antimicrobial resistance? Natural Product Reports, 34 (7), 685–686. https://doi.org/10.1039/c7np90026k
- Battin, E. E., Brumaghim, J. L. (2009). Antioxidant Activity of Sulfur and Selenium: A Review of Reactive Oxygen Species Scavenging, Glutathione Peroxidase, and Metal-Binding Antioxidant Mechanisms. Cell Biochemistry and Biophysics, 55 (1), 1–23. https://doi.org/10.1007/s12013-009-9054-7
- Djukic, M., Fesatidou, M., Xenikakis, I., Geronikaki, A., Angelova, V. T., Savic, V. et al. (2018). In vitro antioxidant activity of thiazolidinone derivatives of 1,3-thiazole and 1,3,4-thiadiazole. Chemico-Biological Interactions, 286, 119–131. https://doi.org/10.1016/j.cbi.2018.03.013
- Chaban, T. I., Ogurtsov, V. V., Chaban, I. G., Klenina, O. V., Komarytsia, J. D. (2013). Synthesis and Antioxidant Activity Evaluation of Novel 5,7-dimethyl-3H-Thiazolo[4,5-B]Pyridines. Phosphorus, Sulfur, and Silicon and the Related Elements, 188 (11), 1611–1620. https://doi.org/10.1080/10426507.2013.777723
- Pokorný, J. (2007). Are natural antioxidants better – and safer – than synthetic antioxidants? European Journal of Lipid Science and Technology, 109(6), 629–642. Portico. https://doi.org/10.1002/ejlt.200700064
- Stoia, M., Oancea, S. (2022). Low-Molecular-Weight Synthetic Antioxidants: Classification, Pharmacological Profile, Effectiveness and Trends. Antioxidants, 11 (4), 638. https://doi.org/10.3390/antiox11040638
- Jones, G. (1967). The Knoevenagel Condensation. Organic Reactions, 15, 204–599.
- He, J., Qiao, W., An, Q., Yang, T., Luo, Y. (2020). Dihydrofolate reductase inhibitors for use as antimicrobial agents. European Journal of Medicinal Chemistry, 195, 112268. https://doi.org/10.1016/j.ejmech.2020.112268
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Olha Borysiuk, Vasyl Zhylko, Lesya Saliyeva, Nataliia Slyvka, Serhii Holota, Alina Grozav, Nina Yakovychuk, Mykhailo Vovk

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.



