Influence of technological heredity on reliability parameters of products

Authors

DOI:

https://doi.org/10.15587/2312-8372.2015.37678

Keywords:

product reliability, technology, process, surface engineering, finishing and strengthening operation

Abstract

It is grounded an expediency of systematic approach to solution the problem of product reliability with implementation of comprehensive system of product (machine) lifecycle management (Product Lifecycle Management – PLM), designing the functionally-oriented technologies of engineering production by parallel engineering means – CAPE (Concurrent Art-to-Product Environment). The role of technological inheritance in the technological chain of manufacturing products is determined. It is shown the importance of blanking operations in study of impact of technological inheritance on quality parameters of the final product due to the close relationship of structural and technological inheritance. It is developed the mathematical relationship, which determines the reliability of technological process P(t) implementation given the current state of science and technology. It is shown the priority of finishing and strengthening operations based on surface plastic deformation over the finish machining operations to ensure the desired performance and reliability. In particular, treatment by vibration-centered strengthening of drilling pump cylinder sleeves helped reduce the high-level and step parameters of the surface layer (Ra, Rz, Rp, Rmax) in 1,5-5,8 times and increase the mean time between failures to 1,79 times compared with the original polished and treated bushings. The ways for further research towards optimizing the structure of processes are marked taking into account technological inheritance; practical recommendations on the use of energy-saving technologies, including the use of vibration to improve the performance of machine parts.

Author Biographies

Олег Анатолійович Кузін, National University "Lviv Polytechnic", 12 Bandera street, Lviv, Ukraine, 79013

Candidate of Technical Sciences, Associate Professor

Department of Applied Material Science and Materials Engineering

Ярослав Маркіянович Кусий, National University "Lviv Polytechnic", 12 Bandera street, Lviv, Ukraine, 79013

Candidate of Technical Sciences, Associate Professor

Department of Mechanical Engineering Technology

Володимир Григорович Топільницький, National University "Lviv Polytechnic", 12 Bandera street, Lviv, Ukraine, 79013

Candidate of Technical Sciences, Associate Professor

Department of Engineering and Operation of Machines 

References

  1. Aleksandrovskaia, L. N., Afanas'ev, A. P., Lisov, A. A. (2001). Sovremennye metody obespecheniia bezotkaznosti slozhnyh tehnicheskih sistem. M.: Logos, 208.
  2. Shneider, Yu. G. (1982). Ekspluatatsionnye svoistva detalei s reguliarnym mikrorel'efom. Ed. 2. L.: Mashinostroenie, Leningrad. otd-nie, 248.
  3. In: Suslov, A. G. (2008). Inzheneriia poverhnosti detalei. M.: Mashinostroenie, 320.
  4. Suslov, A. G. (2000). Kachestvo poverhnostnogo sloia detalei mashin. M.: Mashinostroenie, 320.
  5. Pronikov, A. S. (1978). Nadezhnost' mashin. M.: Mashinostroenie, 592.
  6. Aftanaziv, I. S. (1998). Tekhnolohichne zabezpechennia nadiinosti detalei mashyn. Lviv: DULP, 132.
  7. Odnovolyk, L. A., Virchenko, H. A., Nezenko, A. Y. (2013). Pidkhid do keruvannia bazovymy heometrychnymy parametramy fiuzeliazhu litaka v konteksti PLM-tekhnolohii. Informatsiini systemy, mekhanika ta keruvannia, 9, 15–22.
  8. Stupnytskyi, V. V. (2014). Structural-parametric optimization of the technological processes for the assurance of part’s service properties. Eastern-European Journal Of Enterprise Technologies, 2(3(68)), 9-16. Available: http://journals.uran.ua/eejet/article/view/23378
  9. Kusyi, Ya. M. (2002). Tekhnolohichne zabezpechennia fizyko-mekhanichnykh parametriv poverkhnevykh shariv metalevykh dovhomirnykh tsylindrychnykh detalei vibratsiino-vidtsentrovym zmitsnenniam. Lviv, 260.
  10. Hrulindik, D. S., Petrovskii, E. A. (2011). FMEA – instrument vliianiia na kachestvo protsessov obsluzhivaniia proizvodstva. Sovremennye problemy nauki i obrazovaniia, 6, 39.
  11. ISO 9001: 2008. (2008). Quality management systems – Requirements (Sistemy menedzhmenta kachestva. Trebovaniia). Zheneva, ISO, Shveitsariia, 36.
  12. Vashchenko, N. V. (2014). Metodologiia otsenki sovmestimosti normativnyh trebovanii otechestvennoi i zarubezhnoi praktiki pri postroenii sistem menedzhmenta kachestva. Moskva, 205.
  13. Yashcheritsyn, P. I., Ryzhov, E. V., Averchenko, V. I. (1977). Tehnologicheskaia nasledstvennost' v mashinostroenii. Minsk: Nauka i tehnika, 256.
  14. Markarian, G. K. (1971). Tehnologicheskaia nasledstvennost' pri obrazovanii poverhnosti zakalennyh detalei mashin. Fizika rezaniia metallov, 1, 32-34.
  15. Sadovskii, V. D. (1973). Strukturnaia nasledstvennost' v stali. M.: Metallurgiia, 208.
  16. Bozhydarnik, V. V., Hryhorieva, N. S., Shabaikovych, V. A. (2006). Tekhnolohiia vyhotovlennia detalei vyrobiv. Lutsk: Nadstyria, 612.
  17. Dal'skii, A. M. (1975). Tehnologicheskoe obespechenie nadezhnosti vysokotochnyh detalei mashin. M., Mashinostroeni, 319.
  18. Yashcheritsyn, P. I. et al. (1996). Tehnologicheskie osnovy vysokoeffektivnyh metodov obrabotki detalei. Novopolotsk: PGU, 136.
  19. Vasil'ev, A. S., Dal'skii, A. M., Klimenko, S. A. et al. (2003). Tehnologicheskie osnovy upravleniia kachestvom mashin. M.: Mashinostroenie, 256 .
  20. In: Dunin-Barkovskii, I. V. (1974). Voprosy tehnologicheskoi nadezhnosti. M.: Izdatel'stvo standartov, 156.
  21. Aftanaziv, I., Kusyj, J., Kuritnyk, I. P. (2000). Using vibrations for strengthening of long-sized cylindrical details. Acta Mechanica Slovaca, Košice, 3, 43–46.
  22. Kusyj, J., Topilnitskiyy, V. (2009). Сalculations of vibratory-centrifugal strengthening treatment’s dynamics by means of application software. Book of abstracts XVII Polish-Ukrainian Conference on “CAD in Machinery Design – Implememtation and Educational Problems”, 25–26.
  23. Stotsko, Z., Kusyj, J., Topilnytskyj, V. (2012). Research of vibratory-centrifugal strain hardening on surface quality of cylindric long-sized machine parts. Journal of Manufacturing and Industrial Engineering, 11 (1), 15–17.

Published

2015-01-29

How to Cite

Кузін, О. А., Кусий, Я. М., & Топільницький, В. Г. (2015). Influence of technological heredity on reliability parameters of products. Technology Audit and Production Reserves, 1(1(21), 15–21. https://doi.org/10.15587/2312-8372.2015.37678