Structural-parametric optimization of the technological processes for the assurance of part’s service properties

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.23378

Keywords:

multicriteriaoptimization, function-oriented technology, optimizationcriteria, Product Lifecycle Management

Abstract

Manufacturing application of the Product Lifecycle Management System (PLM) requires functional-oriented technology engineering production. The main feature of functionally-oriented process is application of a complex system qualimetric versatility indicator at the stages of pre-production. This will allow to significantly affect to the provision of working, exploitation, utilization, and other functional properties of engineering products. Method of structural and parametric optimization of functional-oriented machining products is described in the article. This method is based on an analysis of prognostic rheological modeling of the parts stressstrain and thermodynamic state in the process of formation. The formalization of recursive relations between structural and parametric results of technological preproduction planning and product’s operating conditions will provide the best range of qualimetric indicators by the concurrent engineering facilities. Qualimetric integral criterion of technical product is a objective function in making decisions about the optimal structure and parameters of functionally-oriented process. This parameter characterizes the wear resistance, fatigue strength, corrosion resistance and so most loaded surfaces of the product. The integral qualimetric criterion formed as a result of the analysis microtopography surface layer, residual stresses and strains in the formation of these surfaces.

The algorithm of the complex system qualimetric versatility indicator accounting for the engineering products in their potential or critical operation conditions as part of a machine or technological system is described in this article. This algorithm uses accounting heuristic weight coefficients, calculation of normalized local optimization criteria for the most commonly used in engineering practice working indicators

Author Biography

Вадим Володимирович Ступницький, NationalUniversity“LvivPolytechnik” Profesorska 2, Lviv, Ukraine, 79013

PhD, Department of Manufacturing Engineering

Institute of Engineering Mechanics and Transport

References

  1. Гутыря, С. С. Системное моделирование качества механизмов и машин [Текст] / С. С. Гутыря // Труды Одесского политехнического университета. – 2003. – Вып. 2 (20). – С. 14–21.
  2. Stupnytskyy, V. Computer Aided Machine-Building Technological Process Planning by the Methods of Concurrent Engineering [Text] / V. Stupnytskyy // Europa is che Fachhochs chule: Wissenschaftliche Zeitschrift, Stuttgart: ORT Publishing. – 2013. – № 3. – P. 346–354.
  3. Stupnytskyy, V. Featuresof Functionally-Oriented Engineering Technologies inConcurrentEnvironment [Text] / V. Stupnytskyy // International Journal of Engineering Research & Technology (IJERT). – 2013. – Vol. 2, Issue 9. P. – 1181–1186.
  4. Михайлов, А. Н. Основы синтеза функционально-ориентированных технологий. [Текст] / А. Н. Михайлов. – Донецк: ДонНТУ, 2009. – 346 с.
  5. Davim, J. P. Machining of hard materials [Text] / J. Paulo Davim. – Springer, London, 2011. – 225 р.
  6. Klocke, F. M. Developmentof a Material Damage Model for the Prediction of Chip Breakage [Text] : proc. of the 10th inter. conf. / F. Klocke, D. Lung, C. Essig, M. Abouridouane // Technology of Plasticity (ICTP 2011). – 2011. – Vol. 3. – Р. 612–617.
  7. Yoshimura, М. System Design Optimization for Product Manufacturing [Text] / M. Yoshimura // Concurrent Engineering. – 2007. – Vol. 15(4). – Р. 329–343.
  8. Рыжов, Э. В. Оптимизация технологических процессов механической обработки [Текст] / Э. В. Рыжов, В. И. Аверченков. – Киев: Наукова думка, 1989. – 192 с.
  9. Diactu, E. The Computer Aided Design Conception the Concurrent Engineering Context [Text] / E. Diactu, I. Armas // Nanyang Technological University, School of Mechanical and Aerospace Engineering. – 2011. – Vol. 2. – Р. 29–38
  10. Алексеев, А. В. Интеллектуальные системы принятия проектных решений [Текст] / А. В. Алексеев, А. Н. Борисов, Э. Р. Вилюмс и др. – Рига: Зинатне, 1997. – 320 с.
  11. Balakrishna, A. Integration of CAD/CAM/CAE in Product Development System Using STEP/XML [Text] / A. Balakrishna, R. SureshBabu, D. Nageswara Rao, R. Raju, S. Kolli // Concurrent Engineering. – 2006. – Vol. 14 (2). – Р. 121–128.
  12. Крагельский, И. В. Основы расчета на трение и знос [Текст] / И. В. Крагельский, М. Н. Добычин, В. С Комбалов. – М.: Машиностроение, 1977. – 526 с.
  13. Мышкин, Н. К. Трение, смазка, износ. Физические основы и технические приложения трибологии. [Текст] / Н. К. Мышкин, М. И. Петроковец. – М.: Физматлит, 2007. – 368 с.
  14. Сафонов, Б. П. Инженерная трибология: оценка износостойкости и ресурса трибосопряжений. [Текст] / Б. П. Сафонов, А. В. Бегова. – Новомосковск: Изд-во МХТУ им. Менделеева, 2004. – 65 с.
  15. Ступницкий, В. В. Триботехнічний критерій формування функціонально-орієнтованої технології виготовлення деталей в машинобудуванні [Текст] : зб. наук. пр. / В. В. Ступницкий, Є. М. Махоркін // Луцький національний технічний університет «Наукові нотатки». – 2013. – Вип. 42. – С. 305–313.
  16. Улиг, Г. Г. Коррозия и борьба с ней [Текст] / Г. Г. Улиг, Р. У. Реви. – Л.: Химия, 1989. – 456 с.
  17. Ступницький, В. В. Математичне моделювання автоколивань різального інструменту та їхній вплив на інженерію поверхні [Текст] / В. В. Ступницький, Я. М. Новіцький // Машинознавство. – 2013. — № 1-2 (187-188). – С. 19–22.
  18. Лившиц, О. П. Моделирование формирования пластической составляющей высоты неровностей при лезвийной обработке методом конечных элементов [Текст] / О. П. Лившиц, А. Е. Родыгина // Металлообработка. – 2008. – № 6. – С. 8–12.
  19. Родыгина, А. Е. Применение метода конечных элементов в исследовании формирования шероховатости поверхности с учетом пластического течения материала при несвободном резании [Текст] : сб. труд. Всерос. конф. / А. Е. Родыгина // Будущее машиностроения России. – МГТУ им. Н. Э. Баумана, 2008. – С. 36–37.
  20. Демкин, Н. Б. Качество поверхности и контакт деталей машин [Текст] / Н. Б. Демкин, Э. В. Рыжов. – М.: Машиностроение, 1981. – 224 с.
  21. Безъязычный, В. Ф. Расчет режимов резания [Текст] / В. Ф. Безъязычный, И. Н. Аверьянов, А. В. Кордюков. – Рыбинск: РГАТА, 2009. – 185 с.
  22. Gutyrja, S. S. (2003). System modeling quality of machines and mechanisms. Proceedings of the Odessa Polytechnic University, 2(20), 14–21.
  23. Stupnytskyy, V. (2013). Computer Aided Machine-Building Technological Process Planning by the Methods of Concurrent Engineering. Europaische Fachhochschule: Wissenschaftliche Zeitschrift, 3 (13), 346–354.
  24. Stupnytskyy, V. (2013). Features of Functionally-Oriented Engineering Technologies in Concurrent Environment. International Journal of Engineering Research & Technology (IJERT), 1181–1186.
  25. Myhajlow, O. N. (2009). Principles of the function-oriented technologies synthesis. Donetsk, Ukraine: DonNTU, 346.
  26. Davim, J. P. (2011). Machining of hard materials. London: Springer, 225.
  27. Klocke, F. M. (2011). Development of a Material Damage Model for the Prediction of Chip Breakage. Technology of Plasticity (ICTP 2011), 3, 612–617.
  28. Yoshimura, М. (2007). System Design Optimization for Product Manufacturing. Concurrent Engineering, 15(4), 329–343.
  29. Ryzhov, E. V. (1989). Optimization machining processes. Kiev, Scientific Thought, 192.
  30. Diactu, E. (2011). The Computer Aided Design Concept in the Concurrent Engineering Context. Nanyang Technological University, School of Mechanical and Aerospace Engineering, 2, 29–38.
  31. Alekseev, A. V. (1997). Intelligent system design decisions. Riga: Zinatne, 320.
  32. Balakrishna, A. R., Suresh, Babu, Nageswara, Rao, Ranga, Raju, Sudhakar, Kolli (2006). Integration of CAD/CAM/CAE in Product Development System Using STEP/XML. Concurrent Engineering, 14(2), 121–128
  33. Kragelskyy, I. V., Dobychin, M. N., Kombalov, V. S. (1977). Basis of calculation for friction and wear. Мoscow, USSR: Engineering, 526.
  34. Myshkin, N. K., Petrokovets, M. I. (2007). Friction, lubrication, wear. Physical basis and engineering applications of tribology. Мoscow, Russia: Fizmatlit, 368.
  35. Safonov, B. P., Begova, A. V. (2004). Engineering Tribology: Score wear resistance and tribological resource connections. Novomoscowsk, Russia, 65.
  36. Stupnytskyy, V. V., Mahorkin, E. M. (2013). Tribological criterion of functional-oriented technology of parts in engineering. Collected Works of Lutsk National Technical University “Research Notes”, 42, 305–313.
  37. Ulig, G. G., Revi, R. U. (1989). Corrosion and combating. Leningrad, USSR: Chemistry, 456.
  38. Stupnytskyy, V. V. (2013). Mathematical simulation of self-oscillations of the cutting tool and the impact on surface engineering. Lviv, Ukraine: Engineering, 1-2 (187-188), 19–22.
  39. Livshyts, О. P., Rodygina, A. E. (2008). Simulation of the plastic component of the height of the irregularities in the processing of the blade by finite element method. Мoscow, Russia: Metalworking, 6, 8–12.
  40. Rodygina, A. E. (2008). Application of finite element method to study the formation of surface roughness based on the plastic flow of material during unfree cutting process. Proceedings of the All-Russian. The Future Engineering of Russia, Мoscow, 36–37.
  41. Demkin, N. B., Ryzhov, N. B. (1981). Surface quality and contact machine parts. Мoscow, USSR: Engineering, 224.
  42. Bezyazychnyy, V. F., Averjanov, I. N., Kordukov, A. V. (2009). Calculation of cutting mode. Rybinsk, Russia: RGTA, 185.

Published

2014-04-08

How to Cite

Ступницький, В. В. (2014). Structural-parametric optimization of the technological processes for the assurance of part’s service properties. Eastern-European Journal of Enterprise Technologies, 2(3(68), 9–16. https://doi.org/10.15587/1729-4061.2014.23378

Issue

Section

Control processes