Confirmation of authority on source program codes using text steganography in Javascript
Abstract
Authorship verification or plagiarism detection tasks have become widespread with the advent of generative artificial intelligence. Authorship of software codes occupies a prominent place in such tasks. In addition to protecting intellectual property, obstacles arise in educational and scientific activities, and expert organizations are looking for new methods of certifying or disproving the originality of works. The purpose of this work is to develop, substantiate and test the methodology for introducing copyright labels into software codes using steganographic technology of digital "watermarks" and ANSI X9.17. The proposed methodics allowed to provide a cryptographically reliable probability of resistance to forgery for a code with at least 43 lines, while maintaining the statistical invisibility of the inserted labels. An implementation in JavaScript is provided. Such solutions will allow you to confirm authorship for individual code fragments of sufficient length.
Downloads
References
Dickey, Ethan. (2025). The Failure of Plagiarism Detection in Competitive Programming. Cornell University, Computers and Society https://doi.org/10.48550/arXiv.2505.08244
Gehao Zhang, Eugene Bagdasarian, Juan Zhai, Shiqing Ma (2025). Disappearing Ink: Obfuscation Breaks N-gram Code Watermarks in Theory and Practice. Cornell University, Cryptography and Security, https://doi.org/10.48550/arXiv.2507.05512
Samoilenko, D. (2016). PERMUTATION-BASED POLYMORPHIC STEGO-WATERMARKS FOR PROGRAM CODES. Proceedings of National Aviation University, 67(2), 44–51. https://doi.org/10.18372/2306-1472.67.10431
A.A. Martynenko, A.D. Tevyashev, N.E. Kulishova, B.I. Moroz System analysis of the problem of establishing the authenticity and authority of painting works. ISSN 1681–6048 System Research & Information Technologies, 2022, No 1 https://doi.org/10.20535/SRIT.2308-8893.2022.1.04
Mohammed Abuhamad, Tamer Abuhmed, David Mohaisen, and Daehun Nyang. 2021. Large-scale and Robust Code Authorship Identification with Deep Feature Learning. ACM Trans. Priv. Secur. 24, 4, Article 23 (November 2021), 35 pages. https://doi.org/10.1145/3461666
Song, Qige & Zhang, Yongzheng & Ouyang, Linshu & Chen, Yige. (2022). BinMLM: Binary Authorship Verification with Flow-aware Mixture-of-Shared Language Model. https://doi.org/10.48550/arXiv.2203.04472
Czibula, Gabriela & Lupea, Mihaiela & Briciu, Anamaria. (2022). Enhancing the Performance of Software Authorship Attribution Using an Ensemble of Deep Autoencoders. Mathematics. 10. 2572. https://doi.org/10.3390/math10152572
Chunxia Zhang, Sen Wang, Jiayu Wu & Zhendong Niu (2017). Authorship Identification of Source Codes Conference: Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint Conference on Web and Big Data DOI: https://doi.org/10.1007/978-3-319-63579-8_22
Ameen, Siddeeq & Al-Naima, Fawzi. (1977). EFFICIENT COMBINATION OF SEVERAL TECHNIQUES IN THE DESIGN AND IMPLEMENTATION OF A NETWORKS SECURITY SYSTEM.
Roman Oliynykov, Ivan Gorbenko, Oleksandr Kazymyrov, Victor Ruzhentsev, Oleksandr Kuznetsov, Yurii Gorbenko, Oleksandr Dyrda, Viktor Dolgov, Andrii Pushkaryov, Ruslan Mordvinov, Dmytro Kaidalov (2015). A New Encryption Standard of Ukraine: The Kalyna Block Cipher. IACR Cryptol. ePrint Arch. 2015: 650 https://web.archive.org/web/20170716144750/https://eprint.iacr.org/2015/650.pdf
Національний Стандарт України «Інформаційні технології. Криптографічний захист інформації. Функція гешування». ДСТУ 7564:2014. - Київ: Мінекономрозвитку України 2015. https://usts.kiev.ua/wp-content/uploads/2020/07/dstu-7564-2014.pdf
Simmons, G. J. The Prisoners' Problem and the Subliminal Channel [Text] / G. J. Simmons // Advances in Cryptology. – 1985. – Vol. 209. – Р. 364–378
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 E-learning teXnology

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

