DOI: https://doi.org/10.15587/2519-8025.2019.193155

How to escape 'the eskape pathogens' using plant extracts

Oleksandra Pallah, Tamara Meleshko, Tamara Meleshko, Svitlana Tymoshchuk, Svitlana Tymoshchuk, Lesya Yusko, Lesya Yusko, Larisa Bugyna, Larisa Bugyna

Abstract


The aim of the work was to determine the content of biologically active substances, namely polyphenols and anthocyanins, in the extracts of cherryplum, blueberries, jostaberry, sweet cherries, plums, red and black currants, and to study the effect of these extracts on the growth and biofilm formation of clinical isolates of ESKAPE Pathogens in vitro.

Materials and methods. The antibiotic resistance of the following clinical isolates: Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter cloacae was determined by the Kirby-Bauer diffusion method. The bioactive substances content was determined with a thin layer chromatography method. The effect of berry extracts on the above-mentioned isolates was studied by the method of compatible cultivation. The capacity of clinical isolates to form a biofilm was studied by a spectrophotometric method, using gentian violet.

Results. Having analyzed the results of the antibiotic sensitivity of clinical isolates, it was found, that they were resistant to all antimicrobials used. The analysis of the content of bioactive substances of berry extracts showed that they contain a large amount of anthocyanins and polyphenols. It was revealed, that clinical isolates are capable of forming biofilms, and the selected berry extracts had the ability to inhibit the formed biofilms with isolates of clinical origin, such as Klebsiella pneumoniae and Pseudomonas aeruginosa.

Conclusions. Researching the antibacterial properties of anthocyanins and polyphenols, extracted from berries, we can conclude, that they are capable of inhibiting the growth of not only planktonic strains forms, selected by us, but also inhibit the biofilms, formed by them

Keywords


isolates of clinical origin; biofilms; plant extracts

Full Text:

PDF

References


Rice, L. B. (2008). Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. The Journal of Infectious Diseases, 197 (8), 1079–1081. doi: http://doi.org/10.1086/533452

Salmanov, A. H., Mariievskyi, V. F., Doan, S. I. (2010). Antybiotykorezystentnist nozokomialnykh shtamiv Pseudomonas aeruginosa v khirurhichnykh statsionarakh Ukrainy v 2008 rotsi. Shpytalna khirurhiia, 3, 86–89.

Kulia, A. F., Sabo, Yu., Koval, H. M., Boiko, N. V. (2011). Porivnialnyi analiz metodiv vyznachennia antybiotykochutlyvosti umovno-patohennykh bakterii–zbudnykiv oportunistychnykh infektsii liudyny. Mikrobiolohichnyi zhurnal, 73 (5), 47–53.

Othman, L., Sleiman, A., Abdel-Massih, R. M. (2019). Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Frontiers in Microbiology, 10. doi: http://doi.org/10.3389/fmicb.2019.00911

Al Maqtari, Q. A. A., Al Maqtari, M. A. (2014). In vitro antibacterial activity of different Yemeni leaves extracts of Lawsonia inermis against some bacterial pathogens. International Journal of Research Studies in Biosciences, 2 (10), 52–57.

Jimenez-Garcia, S. N., Guevara-Gonzalez, R. G., Miranda-Lopez, R., Feregrino-Perez, A. A., Torres-Pacheco, I., Vazquez-Cruz, M. A. (2013). Functional properties and quality characteristics of bioactive compounds in berries: Biochemistry, biotechnology, and genomics. Food Research International, 54 (1), 1195–1207. doi: http://doi.org/10.1016/j.foodres.2012.11.004

Chen, W., He, Y., Zhou, Y., Shao, Y., Feng, Y., Li, M., Chen, F. (2015). Edible Filamentous Fungi from the SpeciesMonascus: Early Traditional Fermentations, Modern Molecular Biology, and Future Genomics. Comprehensive Reviews in Food Science and Food Safety, 14 (5), 555–567. doi: http://doi.org/10.1111/1541-4337.12145

Volleková, A., Košt’álová, D., Kettmann, V., Tóth, J. (2003). Antifungal activity ofMahonia aquifoliumextract and its major protoberberine alkaloids. Phytotherapy Research, 17 (7), 834–837. doi: http://doi.org/10.1002/ptr.1256

Kechinski, C. P., Guimarães, P. V. R., Noreña, C. P. Z., Tessaro, I. C., Marczak, L. D. F. (2010). Degradation Kinetics of Anthocyanin in Blueberry Juice during Thermal Treatment. Journal of Food Science, 75 (2), C173–C176. doi: http://doi.org/10.1111/j.1750-3841.2009.01479.x

Abbas, M., Saeed, F., Anjum, F. M., Afzaal, M., Tufail, T., Bashir, M. S. Et. al. (2016). Natural polyphenols: An overview. International Journal of Food Properties, 20 (8), 1689–1699. doi: http://doi.org/10.1080/10942912.2016.1220393

Kong, J.-M., Chia, L.-S., Goh, N.-K., Chia, T.-F., Brouillard, R. (2003). Analysis and biological activities of anthocyanins. Phytochemistry, 64 (5), 923–933. doi: http://doi.org/10.1016/s0031-9422(03)00438-2

Coklar, H., Akbulut, M. (2017). Anthocyanins and phenolic compounds of Mahonia aquifolium berries and their contributions to antioxidant activity. Journal of Functional Foods, 35, 166–174. doi: http://doi.org/10.1016/j.jff.2017.05.037

Kandaswami, C., Middleton, E. (1994). Free radical scavenging and antioxidant activity of plant flavonoids. Free radicals in diagnostic medicine. Boston: Springer, 351–376. doi: http://doi.org/10.1007/978-1-4615-1833-4_25

Hertog, M. G., Kromhout, D., Aravanis, C., Blackburn, H., Buzina, R., Fidanza, F., Pekkarinen, M. (1995). Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Archives of internal medicine, 155 (4), 381–386. doi: http://doi.org/10.1001/archinte.155.4.381

Pro zatverdzhennya metodychnyh vkazivok shhodo vyznachennya chutlyvosti mikroorganizmiv do antybakterialnyh preparativ (2007). Nakaz MOZ Ukrainy No. 167. 05.04.2007. Available at: http://mozdocs.kiev.ua/view.php?id=6958

Al-Boushi, M. A., Haj Hamdo, H., Herbali, J. (2014). Extraction and study of the phenolic compounds in the leaves and sticks of the Syrian sumac plant (Rhus coriaria L). International Journal of ChemTech Research, 6, 2414–2415.

Wrolstad, R. E., Acree, T. E., Decker, E. A., Penner, M. H., Reid, D. S., Schwartz, S. J., Sporns, P. (Eds.) (2005). Handbook of food analytical chemistry, volume 1: Water, proteins, enzymes, lipids, and carbohydrates. John Wiley & Sons, 784.

Andrzejewska, J., Sadowska, K., Klóska, Ł., Rogowski, L. (2015). The effect of plant age and harvest time on the content of chosen components and antioxidative potential of black chokeberry fruit. Acta Scientiarum Polonorum Hortorum Cultus, 14, 105–114.

Albadawi, D. A., Mothana, R. A., Khaled, J. M., Ashour, A. E., Kumar, A., Ahmad, S. F. et. al. (2017). Antimicrobial, anticancer, and antioxidant compounds from Premna resinosa growing in Saudi Arabia. Pharmaceutical Biology, 55 (1), 1759–1766. doi: http://doi.org/10.1080/13880209.2017.1322617

Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., De Feo, V. (2013). Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals, 6 (12), 1451–1474. doi: http://doi.org/10.3390/ph6121451

Naz, S., Siddiqi, R., Ahmad, S., Rasool, S. A., Sayeed, S. A. (2007). Antibacterial Activity Directed Isolation of Compounds from Punica granatum. Journal of Food Science, 72 (9), M341–M345. doi: http://doi.org/10.1111/j.1750-3841.2007.00533.x


GOST Style Citations








Copyright (c) 2020 Oleksandra Pallah, Tamara Meleshko, Tamara Meleshko, Svitlana Tymoshchuk, Svitlana Tymoshchuk, Lesya Yusko, Lesya Yusko, Larisa Bugyna, Larisa Bugyna

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2519-8025 (Online), ISSN 2519-8017 (Print)