Effect of a nanodispersion silica composite with polyhexamethylene guanidine hydrochloride on immunological indicators and indicators of oxidation and antioxidant homeostasis in rats with thermal burn

Authors

DOI:

https://doi.org/10.15587/2519-4852.2019.178951

Keywords:

thermal burn, nanosized silica composite with polyhexamethylene guanidine hydrochloride, cytokines, oxidation-antioxidant homeostasis

Abstract

Worldwide, nearly 6 million people annually seek medical attention for burn wounds. Today, the main method of local treatment of wounds and burns, including infected ones, is the use of medicines containing antiseptics, antibiotics, sorbents, as well as their combinations.

Purpose. To determine the effect of a nanosized silica composite with polyhexamethylene guanidine hydrochloride on the immunological parameters and oxidative-antioxidant homeostasis in the blood and in the lesion of rats with an uninfected thermal burn.

Materials and methods. The study was conducted on 72 rats, which were modeled by a thermal burn of the II degree. The animals were divided into 4 groups: intact, control, treated with chlorhexidine, treated with a composite of nanosized silica with polyhexamethylene guanidine hydrochloride. On the 7th, 14th, 21st and 28th day, the animals were removed from the experiment and the immunological parameters and the parameters of oxidative-antioxidant homeostasis in the blood and skin in the lesion were determined.

Results. Thermal injury is directly related to biochemical changes in the body. We compared the levels of anti- and pro-inflammatory cytokines, markers of free radical oxidation - diene conjugate (DC), the active products of thiobarbituric acid (TBA-AP), the activity of catalase (Cat) and superoxide dismutase (SOD). It was proved that the NDK + PHMG-GC composite showed significantly more pronounced compared with chlorhexidine, a pharmacological effect in reducing the level of pro-inflammatory cytokines IL-1β and TNF-α and an increase in the content of IL-10 in the blood and the focus of thermal burn during the entire observation period . Also, the composite effectively affects oxidation-antioxidant homeostasis, which is manifested in the normalization of the content of DC and TBA-AP on the 14th day, restoration of Cat activity on the 14th day, SOD - already on the 7th day compared with chlorhexidine.

Conclusions. The study indicates that the NDS + PHMG composite has pronounced anti-inflammatory and wound healing properties, which allows it to be used as a combined preparation for the treatment of thermal burns

Author Biographies

Anna Doroshenko, Bogomolets National Medical University T. Shevchenko blvd., 13, Kyiv, Ukraine, 01601

Assistant

Department of Pharmacology

Nadiya Gorchakova, Bogomolets National Medical University T. Shevchenko blvd., 13, Kyiv, Ukraine, 01601

MD, Professor

Department of Pharmacology

Ganna Zaychenko, Bogomolets National Medical University T. Shevchenko blvd., 13, Kyiv, Ukraine, 01601

MD, Professor, Head of Department

Department of Pharmacology

References

  1. Vons, В. V., Chubka, М. B., Groshovyi, T. A. (2018). The problem of treatment of burns' wounds and characteristic of drugs for the local treatment of burns. Current issues in pharmacy and medicine: science and practice, 11 (1 (26)), 119–125. doi: http://doi.org/10.14739/2409-2932.2018.1.123731
  2. Global action plan on antimicrobial resistance (2015). World Health Organization. Available at: https://www.who.int/antimicrobial-resistance/global-action-plan/en/
  3. Grigorev, I. A., Polienko, Iu. F., Voinov, M. A. (2009). rN-CHuvstvitelnye nitroksilnye radikaly: strukturnye trebovaniia, problemy molekuliarnogo dizaina i sinteticheskie podkhody. Khimiia aromaticheskikh, geterociklicheskikh i prirodnykh soedinenii. Novosibirsk: ZAO IPP «Ofset», 501–535.
  4. Walczak, M., Richert, A., Burkowska-But, A. (2014). The effect of polyhexamethylene guanidine hydrochloride (PHMG) derivatives introduced into polylactide (PLA) on the activity of bacterial enzymes. Journal of Industrial Microbiology & Biotechnology, 41 (11), 1719–1724. doi: http://doi.org/10.1007/s10295-014-1505-5
  5. Gendaszewska, D., Szuster, L., Wyrębska, Ł., Piotrowska, M. (2018). Antimicrobial Activity of Monolayer and Multilayer Films Containing Polyhexamethylene Guanidine Sulphanilate. Fibres and Textiles in Eastern Europe, 26 (2 (128)), 73–78. doi: http://doi.org/10.5604/01.3001.0011.5742
  6. Lucas, A. D. (2011). Environmental Fate of Polyhexamethylene Biguanide. Bulletin of Environmental Contamination and Toxicology, 88 (3), 322–325. doi: http://doi.org/10.1007/s00128-011-0436-3
  7. Lysytsya, A. V. (2017). Research on the impact of polyhexamethyleneguanidine on the plant component of biocenoses. Biosystems Diversity, 25 (2), 89–95. doi: http://doi.org/10.15421/011713
  8. Zhou, Z., Wei, D., Lu, Y. (2014). Polyhexamethylene guanidine hydrochloride shows bactericidal advantages over chlorhexidine digluconate against ESKAPE bacteria. Biotechnology and Applied Biochemistry, 62 (2), 268–274. doi: http://doi.org/10.1002/bab.1255
  9. Oule, M. K., Azinwi, R., Bernier, A.-M., Kablan, T., Maupertuis, A.-M., Mauler, S. et. al. (2008). Polyhexamethylene guanidine hydrochloride-based disinfectant: a novel tool to fight meticillin-resistant Staphylococcus aureus and nosocomial infections. Journal of Medical Microbiology, 57 (12), 1523–1528. doi: http://doi.org/10.1099/jmm.0.2008/003350-0
  10. Gilbert, P., Moore, L. E. (2005). Cationic antiseptics: diversity of action under a common epithet. Journal of Applied Microbiology, 99 (4), 703–715. doi: http://doi.org/10.1111/j.1365-2672.2005.02664.x
  11. Cherniakova, H. M., Minukhin, V. V., Voronin, Ye. P. (2016). Suchasnyi pohliad na mistseve likuvannia opikiv z infektsiinoiu skladovoiu. Visnyk problem biolohii i medytsyny, 1 (4), 68–72.
  12. Yakovlieva, L. V., Tkachova, O. V., Butko, Ya. O., Larianovska, Yu. B. (2013). Eksperymentalne vyvchennia novykh preparativ dlia mistsevoho likuvannia ran. Kharkiv: Vyd-vo NFaU, 52.
  13. Yevropeiska konventsiia pro zakhyst khrebetnykh tvaryn, shcho vykorystovuiutsia dlia doslidnytskykh abo inshykh naukovykh tsilei 18.03.1986 (1986). Verkhovna Rada Ukrainy. Mizhnarodni dokumenty (Rada Yevropy). Available at: https://zakon.rada.gov.ua/laws/show/994_137
  14. Council Directive 86/609/ЕЕС of 24 November 1986 on the Approximation of the Laws, Regulationsand Administrative Provisions of the Member States Regarding the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (1986). Official Journal of the European Communities, 358, 1–29
  15. Pro zakhyst tvaryn vid zhorstokoho povodzhennia (2006). Zakon Ukrainy # 3447-IV. Vidomosti Verkhovnoi Rady Ukrainy, 27, 230.
  16. Poriadok provedennia naukovymy ustanovamy doslidiv, eksperymentiv na tvarynakh (2012). Ofitsiinyi visnyk Ukrainy, 24, 82.
  17. Glanc, S. (1998). Mediko-biologicheskaia statistika. Moscow: Praktika, 459.
  18. Lebedeva, S. N., Ochirov, O. S., Stelmakh, S. A., Grigoreva, M. N., Zhamsaranova, S. D., Mognonov, D. M. (2017). Wound healing effect of polyhexamethylene guanidine hydrochloride hydrogel at burns. Acta Biomedica Scientifica, 2 (4), 93–96. doi: http://doi.org/10.12737/article_59fad51d481658.42549272
  19. Lebedeva, S. N., Ochirov, O. S., Stelmakh, S. A., Grigor’eva, M. N., Zhamsaranova, S. D., Mognonov, D. M. (2018). Reparative action of hydrogel polygexamethylenuanidine hydrochloride. Bulletin of Siberian Medicine, 17 (1), 112–120. doi: http://doi.org/10.20538/1682-0363-2018-1-112-120
  20. Beliaeva, O. A., Neshta, V. V., Prociuk, R. R., Tugushev A. S. (2007). Primenenie applikacionnykh sorbentov novogo pokoleniia v gnoinoi khirurgii. Klіnіchna khіrurgіia, 11/12, 5–6.
  21. Geraschenko, I. I. (2009). Membranotropnye svoistva nanorazmernogo kremnezema. Poverkhnost, 1 (16), 288–306.
  22. Cherniakova, H. M., Minukhin, V. V., Voronin, Ye. P., Minukhin, D. V., Krasnoiaruzhskyi, A. H., Yefimov, D. S., Ponomarova, K. V. (2017). Obgruntuvannia antymikrobnoi efektyvnosti aplikatsiinykh bionanokompozytiv dlia likuvannia opikovoi infektsii, sprychynenoi S. aureus ta P. Aeruginosa. Klinichna khirurhiia, 12, 48–51.
  23. Cherniakova, H. M., Minukhin, V. V., Horbach, T. V. (2017). Porivnialne doslidzhennia biokhimichnykh pokaznykiv myshei z opikovoiu Pseudomonas-infektsiieiu pry likuvanni novymy aplikatsiinymy sorbentamy. Eksperymentalna i klinichna medytsyna, 4, 15–21.

Downloads

Published

2019-09-25

How to Cite

Doroshenko, A., Gorchakova, N., & Zaychenko, G. (2019). Effect of a nanodispersion silica composite with polyhexamethylene guanidine hydrochloride on immunological indicators and indicators of oxidation and antioxidant homeostasis in rats with thermal burn. ScienceRise: Pharmaceutical Science, (4 (20), 45–52. https://doi.org/10.15587/2519-4852.2019.178951

Issue

Section

Pharmaceutical Science