Development of HPLC method for quantitative determination of epimidin - new perspective АPhI with anticonvulsive activity

Authors

DOI:

https://doi.org/10.15587/2519-4852.2020.203181

Keywords:

Epimidin, pyrazolopyrimidine, anticonvulsant, quantitative determination, HPLC

Abstract

The aim. Development of optimal, high-precision and reproducible methods for quantitative determination of the main substance in the substance Epimidin - 1-(4-methoxyphenyl)-5-[2-[4-(4-methoxyphenyl)piperazin-1-yl]-2-oxo-ethyl]pyrazolo[3,4-d]pyrimidin-4-one by high performance liquid chromatography.

Materials and methods. High performance liquid chromatography (HPLC) was performed using a ShimadzuNexeraX2 LC-30AD system (Shimadzu, Japan) equipped with a SPD-M20A diode array detector (DAD). ACE C18 column, size 250 x 4.6 mm, YMC with pre-column, particle size 5 μm, filled with octylsilyl silica gel for chromatography P. During the work acetonitrile and trifluoroacetic acid of HPLC class (Sigma-AldrichGmbH, Switzerland) were used, other chemicals and solvents were of analytical grade. In the study an analytical ware class A were used that meet the requirements of SPhU.

Results. The following optimal conditions of chromatographic distribution are established: column C18 (250*4.6 mm); the speed of the mobile phase 1 ml / min; column thermostat temperature 35 °С; injection volume 10 μl; mobile phase A - 0.1 % trifluoroacetic acid; mobile phase B - acetonitrile P; the detection wavelength is 270 nm, the retention time of the test compound is 7.22 minutes. The performance of the column was determined for its main indicators, such as the number of theoretical plates (more than 25410) and the coefficient of symmetry (about 1.00). The technique was tested for the influence of various factors, such as flow rate, mobile phase composition and column thermostat temperature. It was established that the influence of these factors is insignificant and does not affect the results obtained by this method. The method was validated in accordance with the recommendations of SPhU on the parameters of specificity, linearity, correctness, precision, robustness (stability).

Conclusions. For the first time, a high-precision and reproducible method for quantitative determination of the main substance in the substance Epimidin with anticonvulsant activity by high-performance liquid chromatography was developed. Conditions for chromatographic analysis (HPLC) were standardized. The requirements for the test “System suitability test criteria for chromatographic methods” are set. Statistical processing of the experimental results shows that the relative uncertainty of the average result is within acceptable limits. The correctness of the method was confirmed by validation studies. The developed technique will be used for pharmaceutical development and standardization of dosage form

Author Biographies

Hanna Severina, National University of Pharmacy Pushkinska str., 53, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Pharmaceutical Chemistry

Ivan Bezruk, National University of Pharmacy Pushkinska str., 53, Kharkiv, Ukraine, 61002

Postgtaduate Student

Department of Pharmaceutical Chemistry

Liudas Ivanauskas, Lithuanian University of Health Sciences Mickevičiaus g. 9, Kaunas, Lithuania, LT 44307

Doctor of Biomedical Sciences, Professor, Head of Department

Department of Analytical and Toxicological Chemistry

Victoriya Georgiyants, National University of Pharmacy Pushkinska str., 53, Kharkiv, Ukraine, 61002

Doctor of Pharmaceutical Sciences, Professor, Head of Department

Department of Pharmaceutical Chemistry

References

  1. Vogt, V. L., Äikiä, M., del Barrio, A., Boon, P., Borbély, C., Bran, E. et. al. (2017). Current standards of neuropsychological assessment in epilepsy surgery centers across Europe. Epilepsia, 58 (3), 343–355. doi: http://doi.org/10.1111/epi.13646
  2. Janmohamed, M., Brodie, M. J., Kwan, P. (2020). Pharmacoresistance – Epidemiology, mechanisms, and impact on epilepsy treatment. Neuropharmacology, 168, 107790. doi: http://doi.org/10.1016/j.neuropharm.2019.107790
  3. Severina, A. I., Kavraiskyi, D. P., Shtrygol, S. Yu., Georgiyants, V. А. (2018). Pat. No. 103378 UA. 5-R-1-Aryl-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one with anticonvulsant activity. MPK: A61K 31/50. No. u 2015 06663. declared: 06.07.2015; published: 26.02.2018, No. 4. Available at: http://uapatents.com/7-103378-5-r-1-aril-15-digidro-4n-pirazolo34-dpirimidin-4-oniv-shho-viyavlyayut-protisudomnu-aktivnist.html
  4. Kavraiskyi, D. P., Shtrygol, S. Yu., Georgiyants, V. А., Severina, A. I. (2016). Screening study of novel pyrazolo[3,4-d]pyrimidine-4-one derivatives for anticonvulsant activity. Pharmacology and drug toxicology, 3 (49), 16–27.
  5. Kavraiskyi, D. P., Shtrygol, S. Yu., Georgiyants, V. А., Severina, A. I. (2016). Experimental study of new pyrazolo[3,4-D]pyrimidine-4-one derivatives for anticonvulsant activity spectrum. ScienceRise: Pharmaceutical Science, 1 (1), 10–17. doi: http://doi.org/10.15587/2519-4852.2016.70528
  6. O' Sullivan, J., Blake, K., Berntgen, M., Salmonson, T., Welink, J. (2018). Overview of the European Medicines Agency's Development of Product-Specific Bioequivalence Guidelines. Clinical Pharmacology & Therapeutics, 104 (3), 539–545. doi: http://doi.org/10.1002/cpt.957
  7. Andrade, E. L., Bento, A. F., Cavalli, J., Oliveira, S. K., Schwanke, R. C., Siqueira, J. M. et. al. (2016). Non-clinical studies in the process of new drug development – Part II: Good laboratory practice, metabolism, pharmacokinetics, safety and dose translation to clinical studies. Brazilian Journal of Medical and Biological Research, 49 (12). doi: http://doi.org/10.1590/1414-431x20165646
  8. Liu, L., Ouyang, J., Baeyens, W. R. G. (2008). Separation of purine and pyrimidine bases by ion chromatography with direct conductivity detection. Journal of Chromatography A, 1193 (1-2), 104–108. doi: http://doi.org/10.1016/j.chroma.2008.04.011
  9. Metwally, F. H., Abdelkawy, M., Abdelwahab, N. S. (2007). Application of spectrophotometric, densitometric, and HPLC techniques as stability indicating methods for determination of Zaleplon in pharmaceutical preparations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 68 (5), 1220–1230. doi: http://doi.org/10.1016/j.saa.2007.01.024
  10. Liu, M., Wang, J., Liu, P. (2016). HPLC method development, validation, and impurity characterization of a potent antitumor nucleoside, T-dCyd (NSC 764276). Journal of Pharmaceutical and Biomedical Analysis, 131, 429–435. doi: http://doi.org/10.1016/j.jpba.2016.08.034
  11. Gunnar, T., Ariniemi, K., Lillsunde, P. (2006). Fast gas chromatography–negative-ion chemical ionization mass spectrometry with microscale volume sample preparation for the determination of benzodiazepines and α-hydroxy metabolites, zaleplon and zopiclone in whole blood. Journal of Mass Spectrometry, 41 (6), 741–754. doi: http://doi.org/10.1002/jms.1030
  12. Larenas, G., Bollo, S., Rodriguez, M., Lemus, I., Nuñez-Vergara, L. J., Squella, J. A., Álvarez-Lueje, A. (2005). Voltammetric Behavior of Zaleplon and Its Differential Pulse Polarographic Determination in Capsules. Journal of AOAC International, 88 (4), 1135–1141. doi: http://doi.org/10.1093/jaoac/88.4.1135
  13. Darwish, H. W., Bakheit, A. H., Darwish, I. A. (2016). Enhanced spectrofluorimetric determination of the multitargeted tyrosine kinase inhibitor, crizotinib, in human plasma via micelle-mediated approach. Tropical Journal of Pharmaceutical Research, 15 (10), 2209–2217. doi: http://doi.org/10.4314/tjpr.v15i10.20
  14. Satyanarayana, L., Naidu, S. V., Narasimha Rao, M., Suma Latha, R. (2011). The estimation of Nilotinib in capsule dosage form by RP-HPLC. Asian Journal of Pharmaceutical Analysis, 1 (4), 100–102.
  15. Swathi, P., Dutt, K. R., Rao, K. N. V., Raja, M. A. (2017). RP-HPLC Method Development and Validation for Estimation of Sofosbuvir in Pure and Tablet Dosage Form. Asian Journal of Pharmacy and Technology, 7 (3), 153–156. doi: http://doi.org/10.5958/2231-5713.2017.00025.3
  16. Zhang, B., Zhang, Z., Tian, Y., Xu, F., Chen, Y. (2006). High-performance liquid chromatography–atmospheric pressure chemical ionisation-mass spectrometry determination of zaleplon in human plasma. Journal of Pharmaceutical and Biomedical Analysis, 40 (3), 707–714. doi: http://doi.org/10.1016/j.jpba.2005.06.031
  17. Giroud, C., Augsburger, M., Menetrey, A., Mangin, P. (2003). Determination of zaleplon and zolpidem by liquid chromatography–turbo-ionspray mass spectrometry: application to forensic cases. Journal of Chromatography B, 789 (1), 131–138. doi: http://doi.org/10.1016/s1570-0232(03)00135-1
  18. Kintz, P., Villain, M., Concheiro, M., Cirimele, V. (2005). Screening and confirmatory method for benzodiazepines and hypnotics in oral fluid by LC-MS/MS. Forensic Science International, 150 (2-3), 213–220. doi: http://doi.org/10.1016/j.forsciint.2004.12.040
  19. Foda, N. H., Abd Elbary, A., El‐Gazayerly, O. (2006). Reversed–Phase Liquid Chromatographic Determination of Zaleplon in Human Plasma and its Pharmacokinetic Application. Analytical Letters, 39 (9), 1891–1905. doi: http://doi.org/10.1080/00032710600721654
  20. Derzhavna Pharmakopeya Ukrayini. Vol. 1. DP «Naukovo-ekspertniy farmakopeyniy tsentr» (2015). Kharkiv: DP «Ukrayinskiy naukoviy farmakopeyniy tsentr yakostI lIkarskih zasobIv», 1128.

Downloads

Published

2020-06-30

How to Cite

Severina, H., Bezruk, I., Ivanauskas, L., & Georgiyants, V. (2020). Development of HPLC method for quantitative determination of epimidin - new perspective АPhI with anticonvulsive activity. ScienceRise: Pharmaceutical Science, (3 (25), 4–11. https://doi.org/10.15587/2519-4852.2020.203181

Issue

Section

Pharmaceutical Science