Targeting the brain: various approaches and science involved

Authors

DOI:

https://doi.org/10.15587/2519-4852.2020.210824

Keywords:

blood brain barrier (BBB), blood cerebrospinal fluid barriers (BCSF) of central nerves system, brain targeted drug delivery

Abstract

The brain targeting drug delivery system is the technique and process to deliver the drug into brain or central nerves system (CNS). The main problem arise during brain targeting in case of several brain related diseases and disorders such as CNS malignancy, brain abscess, multiple sclerosis, schizophrenia etc. selective and limiting permeation nature of barriers i.e. blood brain barrier (BBB) and blood cerebrospinal fluid barrier (BCSF), these two barriers only allow highly lipophilic molecule enters into brain and is one of the greatest clinical impediment of treatment of brain and CNS diseases and disorders.  To treated this type of diseases and disorders drugs are targeted into brain and drug must be cross these two barriers they’re by different types of approaches are used to delivered drug molecules.

Aim of research. The main aim of this review paper is to compile all the approaches, strategies and techniques used for brain targeted drug delivery in a single paper/ article.

Material and method. To prepare this manuscript, various keywords were searched in different engines such as Google, Yahoo and Bing etc. The available information in public domain was collected and classified according to brain drug delivery system. This review deals with approaches and current strategies used to enhance the brain targeted drug delivery system. The approaches for brain targeting – invasive, non- invasive and miscellaneous techniques, by using these approaches enhance the drugs delivery and drugs are easily across BBB and BCSF.

Result. The different type of approaches and strategies used to enhance the drug delivery into brain and CNS. All these techniques described in this paper are applied for overcoming the problems that arises during treatment of brain related diseases. This review paper has a list of different types of models (In-vitro and In-vivo) used in study of brain and CNS drug delivery.

Conclusions. Drug delivery to brain for treating a various diseases and disorders are very difficult and challenging because the delivery of drug molecules must be pass through the BBB and BCSF. Overcome this difficulties and challenges certain approaches and technique such as invasive, non-invasive, intranasal delivery of drug, ocular delivery of drug and focused ultrasound technique are used to brain targeting. They are help to penetrate the drug molecule through BBB and CSF very easily and enhance the efficacy of treatment. This review article covered current approaches and strategies of brain targeting drug delivery in past five to ten years. These approaches and strategies are used to the brain delivery of drug, proteins, peptides, amino acids, etc.

Author Biographies

Sanjib Bahadur, Columbia Institute of Pharmacy Vill. Tekari, Near Vidhan Sabha, Raipur, Chhattisgarh, India, 493111

PhD, Associate Professor

Department of Pharmaceutics

Tripti Naurange, Columbia Institute of Pharmacy Vill. Tekari, Near Vidhan Sabha, Raipur, Chhattisgarh, India, 493111

Department of Pharmaceutics

Pragya Baghel, Columbia Institute of Pharmacy Vill. Tekari, Near Vidhan Sabha, Raipur, Chhattisgarh, India, 493111

PhD, Assistant Professor

Department of Pharmaceutics

Manisha Sahu, Columbia Institute of Pharmacy Vill. Tekari, Near Vidhan Sabha, Raipur, Chhattisgarh, India, 493111

Department of Pharmaceutics

Kamesh Yadu, Columbia Institute of Pharmacy Vill. Tekari, Near Vidhan Sabha, Raipur, Chhattisgarh, India, 493111

Department of Pharmaceutics

References

  1. Dong, X. (2018). Current Strategies for Brain Drug Delivery. Theranostics, 8 (6), 1481–1493. doi: http://doi.org/10.7150/thno.21254
  2. Mulvihill, J. J., Cunnane, E. M., Ross, A. M., Duskey, J. T., Tosi, G., Grabrucker, A. M. (2020). Drug delivery across the blood–brain barrier: recent advances in the use of nanocarriers. Nanomedicine, 15 (2), 205–214. doi: http://doi.org/10.2217/nnm-2019-0367
  3. Bors, L., Erdő, F. (2019). Overcoming the Blood–Brain Barrier. Challenges and Tricks for CNS Drug Delivery. Scientia Pharmaceutica, 87 (1), 6. doi: http://doi.org/10.3390/scipharm87010006
  4. Saraiva, C., Praça, C., Ferreira, R., Santos, T., Ferreira, L., Bernardino, L. (2016). Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. Journal of Controlled Release, 235, 34–47. doi: http://doi.org/10.1016/j.jconrel.2016.05.044
  5. Tyagi, A., Sharm, P. K., Malviya, R. (2018). Insignement to Brain Targeting of Drugs. Drug Design Development and Delivery Journal, 1 (1). doi: http://doi.org/10.31021/ddddj.20181105
  6. Serlin, Y., Shelef, I., Knyazer, B., Friedman, A. (2015). Anatomy and physiology of the blood–brain barrier. Seminars in Cell & Developmental Biology, 38, 2–6. doi: http://doi.org/10.1016/j.semcdb.2015.01.002
  7. Johanson, C. E., Stopa, E. G., McMillan, P. N. (2010). The Blood–Cerebrospinal Fluid Barrier: Structure and Functional Significance. The Blood-Brain and Other Neural Barriers, 101–131. doi: http://doi.org/10.1007/978-1-60761-938-3_4
  8. Neves, A. R., Queiroz, J. F., Weksler, B., Romero, I. A., Couraud, P.-O., Reis, S. (2015). Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: two new strategies of functionalization with apolipoprotein E. Nanotechnology, 26 (49), 495103. doi: http://doi.org/10.1088/0957-4484/26/49/495103
  9. Brahmancar, D. M., Jaiswal, S. B. (2015). Biopharmaceutics and pharmacokinetics a treatise. Delhi, 544.
  10. Deeksha, D., Malviya, R., Sharma, P. (2014). Brain Targeted Drug Delivery: Factors, Approaches and Patents. Recent Patents on Nanomedicine, 4 (1), 2–14. doi: http://doi.org/10.2174/1877912304666140707184721
  11. Jones, H. C. (2006). The Blood-Cerebrospinal Fluid Barrier. Edited by: Wei Zheng, Adam Chodobski. Chapman and Hall/CRC, Taylor and Francis Group, Boca Raton, Florida USA; 2005. Cerebrospinal Fluid Research, 3 (1). doi: http://doi.org/10.1186/1743-8454-3-12
  12. Jadhav, K., Gambhire, M., Shaikh, I., Kadam, V., Pisal, S. (2007). Nasal Drug Delivery System-Factors Affecting and Applications. Current Drug Therapy, 2 (1), 27–38. doi: http://doi.org/10.2174/157488507779422374
  13. Dhakar, R. C., Maurya, S. D., Tilak, V. K., Gupta, A. K. (2011). A review on factors affecting the design of nasal drug delivery system. International Journal of Drug Delivery, 1 (2), 194–208.
  14. Sandipan, R. (2012). Strategic Drug Delivery Targeted to the Brain: A Review. Pelagia Research Library, 3 (1), 17.
  15. Nagpal, K., Singh, S. K., Mishra, D. N. (2013). Drug targeting to brain: a systematic approach to study the factors, parameters and approaches for prediction of permeability of drugs across BBB. Expert Opinion on Drug Delivery, 10 (7), 927–955. doi: http://doi.org/10.1517/17425247.2013.762354
  16. Thakur, S., Sharma, P. K., Malviya, R. (2017). A Review : Recent Strategies Involved in Brain Targeting Through Ocular Route-Patents and Application. Available at: https://www.semanticscholar.org/paper/A-Review- %3A-Recent-Strategies-Involved-in-Brain-and-Thakur-Sharma/ccc7b427b1f7342a547b5184a960366b192cc3d6
  17. Varsha, A., Om, B., Kuldeep, R., Bindiya, P., Riddhi, P. (2014). Poles apart inimitability of brain targeted drug delivery system in middle of NDDS. International Journal of Drug Development and Research, 6 (4), 15–27.
  18. Slavc, I., Cohen-Pfeffer, J. L., Gururangan, S., Krauser, J., Lim, D. A., Maldaun, M. et. al. (2018). Best practices for the use of intracerebroventricular drug delivery devices. Molecular Genetics and Metabolism, 124 (3), 184–188. doi: http://doi.org/10.1016/j.ymgme.2018.05.003
  19. Atkinson, A. J. (2017). Intracerebroventricular drug administration. Translational and Clinical Pharmacology, 25 (3), 117. doi: http://doi.org/10.12793/tcp.2017.25.3.117
  20. Mishra, N., Pant, P., Porwal, A., Jaiswal, J., Samad, M. A. S. T. (2016). Targeted drug delivery system : A Review. American Journal of PharmTech Research, 6 (1), 1–24.
  21. Rhea, E. M., Salameh, T. S., Banks, W. A. (2019). Routes for the delivery of insulin to the central nervous system: A comparative review. Experimental Neurology, 313, 10–15. doi: http://doi.org/10.1016/j.expneurol.2018.11.007
  22. Zeeshan, M., Mukhtar, M., Ul Ain, Q., Khan, S., Ali, H. (2020). Nanopharmaceuticals: A Boon to the Brain-Targeted Drug Delivery. Pharmaceutical Formulation Design – Recent Practices. doi: http://doi.org/10.5772/intechopen.83040
  23. Yokel, R. A. (2020). Nanoparticle brain delivery: a guide to verification methods. Nanomedicine, 15 (4), 409–432. doi: http://doi.org/10.2217/nnm-2019-0169
  24. Shakeri, S., Ashrafizadeh, M., Zarrabi, A., Roghanian, R., Afshar, E. G., Pardakhty, A. et. al. (2020). Multifunctional Polymeric Nanoplatforms for Brain Diseases Diagnosis, Therapy and Theranostics. Biomedicines, 8 (1), 13. doi: http://doi.org/10.3390/biomedicines8010013
  25. Vassanelli, S. (2011). Brain-Chip Interfaces: The Present and The Future. Procedia Computer Science, 7, 61–64. doi: http://doi.org/10.1016/j.procs.2011.12.020
  26. Eltorai, A. E. M., Fox, H., McGurrin, E., Guang, S. (2016). Microchips in Medicine: Current and Future Applications. BioMed Research International, 2016, 1–7. doi: http://doi.org/10.1155/2016/1743472
  27. Patel, M. M., Goyal, B. R., Bhadada, S. V., Bhatt, J. S., Amin, A. F. (2009). Getting into the brain: Approaches to enhance brain drug delivery. CNS Drugs, 23 (1), 35–58. doi: http://doi.org/10.2165/0023210-200923010-00003
  28. Rodriguez, A., Tatter, S., Debinski, W. (2015). Neurosurgical Techniques for Disruption of the Blood–Brain Barrier for Glioblastoma Treatment. Pharmaceutics, 7 (3), 175–187. doi: http://doi.org/10.3390/pharmaceutics7030175
  29. Bellavance, M.-A., Blanchette, M., Fortin, D. (2008). Recent Advances in Blood–Brain Barrier Disruption as a CNS Delivery Strategy. The AAPS Journal, 10 (1), 166–177. doi: http://doi.org/10.1208/s12248-008-9018-7
  30. Neuwelt, E. A., Specht, H. D., Howieson, J. (1983). Osmotic blood-brain barrier modification: Clinical documentation by enhanced CT scanning and/or radionuclide brain scanning. American Journal of Neuroradiology, 4 (4), 907–913.
  31. Xie, J., Shen, Z., Anraku, Y., Kataoka, K., Chen, X. (2019). Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials, 224, 119491. doi: http://doi.org/10.1016/j.biomaterials.2019.119491
  32. O’Reilly, M. A., Hynynen, K. (2012). Ultrasound enhanced drug delivery to the brain and central nervous system. International Journal of Hyperthermia, 28 (4), 386–396. doi: http://doi.org/10.3109/02656736.2012.666709
  33. Meairs, S. (2015). Facilitation of Drug Transport across the Blood–Brain Barrier with Ultrasound and Microbubbles. Pharmaceutics, 7 (3), 275–293. doi: http://doi.org/10.3390/pharmaceutics7030275
  34. Fang, F., Zou, D., Wang, W., Yin, Y., Yin, T., Hao, S. et. al. (2017). Non-invasive approaches for drug delivery to the brain based on the receptor mediated transport. Materials Science and Engineering: C, 76, 1316–1327. doi: http://doi.org/10.1016/j.msec.2017.02.056
  35. Pardridge, W. M. (1999). Non-invasive drug delivery to the human brain using endogenous blood–brain barrier transport systems. Pharmaceutical Science & Technology Today, 2 (2), 49–59. doi: http://doi.org/10.1016/s1461-5347(98)00117-5
  36. Kristensen, M., Brodin, B. (2017). Routes for Drug Translocation Across the Blood-Brain Barrier: Exploiting Peptides as Delivery Vectors. Journal of Pharmaceutical Sciences, 106 (9), 2326–2334. doi: http://doi.org/10.1016/j.xphs.2017.04.080
  37. Gao, H. (2016). Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharmaceutica Sinica B, 6 (4), 268–286. doi: http://doi.org/10.1016/j.apsb.2016.05.013
  38. Wong, K., Riaz, M., Xie, Y., Zhang, X., Liu, Q., Chen, H. et. al. (2019). Review of Current Strategies for Delivering Alzheimer’s Disease Drugs across the Blood-Brain Barrier. International Journal of Molecular Sciences, 20 (2), 381. doi: http://doi.org/10.3390/ijms20020381
  39. Gabathuler, R. (2010). Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiology of Disease, 37 (1), 48–57. doi: http://doi.org/10.1016/j.nbd.2009.07.028
  40. Nikam, P. M., Gondkar, S. B., Saudagar, R. B. (2015). Brain Targeting Drug Delivery System: A Review. Asian Journal of Research in Pharmaceutical Science, 5 (4), 247. doi: http://doi.org/10.5958/2231-5659.2015.00036.3
  41. Prokai-Tatrai, K., Szarka, S., Nguyen, V. (2011). “All in the Mind”? Brain-Targeting Chemical Delivery System of 17β-Estradiol (Estredox) Produces Significant Uterotrophic Side Effect. Pharmaceutica Analytica Acta. doi: http://doi.org/10.4172/2153-2435.s7-002
  42. Rautio, J., Kumpulainen, H., Heimbach, T., Oliyai, R., Oh, D., Järvinen, T., Savolainen, J. (2008). Prodrugs: design and clinical applications. Nature Reviews Drug Discovery, 7 (3), 255–270. doi: http://doi.org/10.1038/nrd2468
  43. Shirke, S., Shewale, S., Satpute, M. (2015). Prodrug Design : an Overview. International journal of pharmaceutical, chemical and biological sciences, 5 (1), 232–241.
  44. Lu, C.-T., Zhao, Y.-Z., Wong, H. L., Cai, J., Peng, L., Tian, X.-Q. (2014). Current approaches to enhance CNS delivery of drugs across the brain barriers. International Journal of Nanomedicine, 9 (1), 2241–2257. doi: http://doi.org/10.2147/ijn.s61288
  45. Samuel, D. S., Mathew, M. G. (2019). Methods of delivering drugs across blood–brain barrier. Drug Invention Today, 12 (1), 170–172.
  46. Rautio, J., Laine, K., Gynther, M., Savolainen, J. (2008). Prodrug Approaches for CNS Delivery. The AAPS Journal, 10 (1), 92–102. doi: http://doi.org/10.1208/s12248-008-9009-8
  47. Prokai-Tatrai, K., Prokai, L. (2011). Prodrug Design for Brain Delivery of Small- and Medium-Sized Neuropeptides. Methods in Molecular Biology. Humana Press, 313–336. doi: http://doi.org/10.1007/978-1-61779-310-3_21
  48. Engineering, C. (2007). Colloidal Drug Carrier Learn more about Colloidal Drug Carrier The artificial cell design: liposomes. Nanoneuroscience and Nanoneu- ropharmacology.
  49. Garcia-Garcia, E., Andrieux, K., Gil, S., Couvreur, P. (2005). Colloidal carriers and blood–brain barrier (BBB) translocation: A way to deliver drugs to the brain? International Journal of Pharmaceutics, 298 (2), 274–292. doi: http://doi.org/10.1016/j.ijpharm.2005.03.031
  50. Teleanu, D., Chircov, C., Grumezescu, A., Volceanov, A., Teleanu, R. (2018). Blood-Brain Delivery Methods Using Nanotechnology. Pharmaceutics, 10 (4), 269. doi: http://doi.org/10.3390/pharmaceutics10040269
  51. Avhad, P. S., Patil, P. B., Jain, N. P., Laware, S. G. (2015). A Review on Different Techniques for Brain Targeting. International Journal of Pharmaceutical Chemistry and Analysis, 2 (3), 143–147.
  52. Kaur, S., Kaur, P. (2019). Nanoparticles Characterization and Applications: An Overview. Indo Global Journal of Pharmaceutical Sciences, 9 (2), 146–146. doi: http://doi.org/10.35652/igjps.2019.92s44
  53. Hu, Y., Gaillard, P. J., de Lange, E. C. M., Hammarlund-Udenaes, M. (2019). Targeted brain delivery of methotrexate by glutathione PEGylated liposomes: How can the formulation make a difference? European Journal of Pharmaceutics and Biopharmaceutics, 139, 197–204. doi: http://doi.org/10.1016/j.ejpb.2019.04.004
  54. Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y. et. al. (2013). Liposome: classification, preparation, and applications. Nanoscale Research Letters, 8 (1). doi: http://doi.org/10.1186/1556-276x-8-102
  55. Singh, S. B. (2013). Novel Approaches for Brain Drug Delivery System-Review. International Journal of Pharma Research & Review, 2 (26), 36–44.
  56. Gharbavi, M., Amani, J., Kheiri-Manjili, H., Danafar, H., Sharafi, A. (2018). Niosome: A Promising Nanocarrier for Natural Drug Delivery through Blood-Brain Barrier. Advances in Pharmacological Sciences, 2018, 1–15. doi: http://doi.org/10.1155/2018/6847971
  57. Madhav, N. V. S., Saini, A. (2011). Niosomes: a Novel Drug Delivery System. International Journal of Research in Pharmacy and Chemistry, 1 (3), 498–511. Available at: http://www.ijrpc.com/files/00035.pdf
  58. Qumbar, M., Ameeduzzafar, Imam, S. S., Ali, J., Ahmad, J., Ali, A. (2017). Formulation and optimization of lacidipine loaded niosomal gel for transdermal delivery: In-vitro characterization and in-vivo activity. Biomedicine & Pharmacotherapy, 93, 255–266. doi: http://doi.org/10.1016/j.biopha.2017.06.043
  59. Upadhyay, R. K. (2014). Drug Delivery Systems, CNS Protection, and the Blood Brain Barrier. BioMed Research International, 2014, 1–37. doi: http://doi.org/10.1155/2014/869269
  60. Strambeanu, N., Demetrovici, L., Dragos, D., Lungu, M. (2014). Nanoparticles: Definition, Classification and General Physical Properties. Nanoparticles’ Promises and Risks. Springer International Publishing, 3–8. doi: http://doi.org/10.1007/978-3-319-11728-7_1
  61. Sahoo, S. K., Labhasetwar, V. (2003). Nanotech approaches to drug delivery and imaging. Drug Discovery Today, 8 (24), 1112–1120. doi: http://doi.org/10.1016/s1359-6446(03)02903-9
  62. Surender, V., Deepika, M. (2016). Solid lipid nanoparticles: a comprehensive review. Journal of Chemical and Pharmaceutical Research, 8 (8), 102–114. Available at: http://www.jocpr.com/articles/solid-lipid-nanoparticles-a-comprehensive-review.pdf
  63. Yadav, N., Khatak, S., Singh Sara, U. V. (2013). Solid lipid nanoparticles- A review. International Journal of Applied Pharmaceutics, 5 (2), 8–18.
  64. Mutyam Pallerla, S., Prabhakar, B. (2013). A review on solid lipid nanoparticles. International Journal of Pharmaceutical Sciences Review and Research, 20 (2), 196–206.
  65. Masserini, M. (2013). Nanoparticles for Brain Drug Delivery. ISRN Biochemistry, 2013, 1–18. doi: http://doi.org/10.1155/2013/238428
  66. Joseph, E., Saha, R. N. (2013). Advances in Brain Targeted Drug Delivery: Nanoparticulate Systems. Journal of PharmaSciTech, 3 (1).
  67. Bonferoni, M., Rossi, S., Sandri, G., Ferrari, F., Gavini, E., Rassu, G., Giunchedi, P. (2019). Nanoemulsions for “Nose-to-Brain” Drug Delivery. Pharmaceutics, 11 (2), 84. doi: http://doi.org/10.3390/pharmaceutics11020084
  68. Pagar, K. R., Darekar, A. B. (2019). Nanoemulsion: A new concept of Delivery System. Asian Journal of Research in Pharmaceutical Science, 9 (1), 39. doi: http://doi.org/10.5958/2231-5659.2019.00006.7
  69. Chatterjee, B., Gorain, B., Mohananaidu, K., Sengupta, P., Mandal, U. K., Choudhury, H. (2019). Targeted drug delivery to the brain via intranasal nanoemulsion: Available proof of concept and existing challenges. International Journal of Pharmaceutics, 565, 258–268. doi: http://doi.org/10.1016/j.ijpharm.2019.05.032
  70. Pardeshi, C. V., Belgamwar, V. S. (2018). N,N,N‑trimethyl chitosan modified flaxseed oil based mucoadhesive neuronanoemulsions for direct nose to brain drug delivery. International Journal of Biological Macromolecules, 120, 2560–2571. doi: http://doi.org/10.1016/j.ijbiomac.2018.09.032
  71. Gurpreet, K., Singh, S. K. (2018). Review of nanoemulsion formulation and characterization techniques. Indian Journal of Pharmaceutical Sciences, 80 (5), 781–789. doi: http://doi.org/10.4172/pharmaceutical-sciences.1000422
  72. L. Shinde, R., B. Jindal, A., V. Devarajan, P. (2011). Microemulsions and Nanoemulsions for Targeted Drug Delivery to the Brain. Current Nanoscience, 7 (1), 119–133. doi: http://doi.org/10.2174/157341311794480282
  73. Shinde, R. L., Bharkad, G. P., Devarajan, P. V. (2015). Intranasal microemulsion for targeted nose to brain delivery in neurocysticercosis: Role of docosahexaenoic acid. European Journal of Pharmaceutics and Biopharmaceutics, 96, 363–379. doi: http://doi.org/10.1016/j.ejpb.2015.08.008
  74. Jaiswal, P. L., Darekar, A. B., Saudagar, R. B. (2017). A recent review on nasal microemulsion for treatment of cns disorder. International Journal of Current Pharmaceutical Research, 9 (4), 5. doi: http://doi.org/10.22159/ijcpr.2017v9i4.20963
  75. Nayak, A. K., Dey, S., Pal, K., Banerjee, I. (2019). Iontophoretic drug delivery systems. Bioelectronics and Medical Devices. Elsevier, 393–420. doi: http://doi.org/10.1016/b978-0-08-102420-1.00022-4
  76. Sharma, K. (2017). Recent advancement in drug delivery system for brain: An overview. World Journal of Pharmacy and Pharmaceutical Sciences, 292–305. doi: http://doi.org/10.20959/wjpps20177-9454
  77. Dixit, N., Bali, V., Baboota, S., Ahuja, A., Ali, J. (2007). Iontophoresis – An Approach for Controlled Drug Delivery: A Review. Current Drug Delivery, 4 (1), 1–10. doi: http://doi.org/10.2174/1567201810704010001
  78. Green, P. G. (1996). Iontophoretic delivery of peptide drugs. Journal of Controlled Release, 41 (1-2), 33–48. doi: http://doi.org/10.1016/0168-3659(96)01354-5
  79. Chen, H., Yang, G. Z. X., Getachew, H., Acosta, C., Sierra Sánchez, C., Konofagou, E. E. (2016). Focused ultrasound-enhanced intranasal brain delivery of brain-derived neurotrophic factor. Scientific Reports, 6 (1). doi: http://doi.org/10.1038/srep28599
  80. Klibanov, A. L., McDannold, N. J. (2019). Moving toward Noninvasive, Focused Ultrasound Therapeutic Delivery of Drugs in the Brain: Prolonged Opening of Blood-Brain Barrier May Not Be Needed. Radiology, 291 (2), 467–468. doi: http://doi.org/10.1148/radiol.2019190410
  81. Hynynen, K., Clement, G. (2007). Clinical applications of focused ultrasound – The brain. International Journal of Hyperthermia, 23 (2), 193–202. doi: http://doi.org/10.1080/02656730701200094
  82. Burgess, A., Hynynen, K. (2013). Noninvasive and Targeted Drug Delivery to the Brain Using Focused Ultrasound. ACS Chemical Neuroscience, 4 (4), 519–526. doi: http://doi.org/10.1021/cn300191b
  83. Erdő, F., Bors, L. A., Farkas, D., Bajza, Á., Gizurarson, S. (2018). Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Research Bulletin, 143, 155–170. doi: http://doi.org/10.1016/j.brainresbull.2018.10.009
  84. Vyas, T., Shahiwala, A., Marathe, S., Misra, A. (2005). Intranasal Drug Delivery for Brain Targeting. Current Drug Delivery, 2 (2), 165–175. doi: http://doi.org/10.2174/1567201053586047
  85. Lobaina Mato, Y. (2019). Nasal route for vaccine and drug delivery: Features and current opportunities. International Journal of Pharmaceutics, 572, 118813. doi: http://doi.org/10.1016/j.ijpharm.2019.118813
  86. Wang, Z., Xiong, G., Tsang, W. C., Schätzlein, A. G., Uchegbu, I. F. (2019). Nose-to-Brain Delivery. Journal of Pharmacology and Experimental Therapeutics, 370 (3), 593–601. doi: http://doi.org/10.1124/jpet.119.258152
  87. Algin-Yapar, E. (2014). Nasal Inserts for Drug Delivery: An Overview. Tropical Journal of Pharmaceutical Research, 13 (3), 459. doi: http://doi.org/10.4314/tjpr.v13i3.22
  88. Djupesland, P. G. (2012). Nasal drug delivery devices: characteristics and performance in a clinical perspective – a review. Drug Delivery and Translational Research, 3 (1), 42–62. doi: http://doi.org/10.1007/s13346-012-0108-9
  89. Nezhat, C. R., Nezhat, F. R., Metzger, D. A., Luciano, A. A. (1990). Adhesion reformation after reproductive surgery by videolaseroscopy. Fertility and Sterility, 53 (6), 1008–1011. doi: http://doi.org/10.1016/s0015-0282(16)53576-6
  90. Marx, D., Williams, G., Birkhoff, M. (2015). Intranasal Drug Administration – An Attractive Delivery Route for Some Drugs. Drug Discovery and Development – From Molecules to Medicine. doi: http://doi.org/10.5772/59468
  91. Khan, A. R., Liu, M., Khan, M. W., Zhai, G. (2017). Progress in brain targeting drug delivery system by nasal route. Journal of Controlled Release, 268, 364–389. doi: http://doi.org/10.1016/j.jconrel.2017.09.001
  92. Sabir, F., Ismail, R., Csoka, I. (2020). Nose-to-brain delivery of antiglioblastoma drugs embedded into lipid nanocarrier systems: status quo and outlook. Drug Discovery Today, 25 (1), 185–194. doi: http://doi.org/10.1016/j.drudis.2019.10.005
  93. Patel, A., Surti, N., Mahajan, A. (2019). Intranasal drug delivery: Novel delivery route for effective management of neurological disorders. Journal of Drug Delivery Science and Technology, 52, 130–137. doi: http://doi.org/10.1016/j.jddst.2019.04.017
  94. Crowe, T. P., Greenlee, M. H. W., Kanthasamy, A. G., Hsu, W. H. (2018). Mechanism of intranasal drug delivery directly to the brain. Life Sciences, 195, 44–52. doi: http://doi.org/10.1016/j.lfs.2017.12.025
  95. Bourganis, V., Kammona, O., Alexopoulos, A., Kiparissides, C. (2018). Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. European Journal of Pharmaceutics and Biopharmaceutics, 128, 337–362. doi: http://doi.org/10.1016/j.ejpb.2018.05.009
  96. Costa, C., Moreira, J. N., Amaral, M. H., Sousa Lobo, J. M., Silva, A. C. (2019). Nose-to-brain delivery of lipid-based nanosystems for epileptic seizures and anxiety crisis. Journal of Controlled Release, 295, 187–200. doi: http://doi.org/10.1016/j.jconrel.2018.12.049
  97. Modarres, H. P., Janmaleki, M., Novin, M., Saliba, J., El-Hajj, F., RezayatiCharan, M. et. al. (2018). In vitro models and systems for evaluating the dynamics of drug delivery to the healthy and diseased brain. Journal of Controlled Release, 273, 108–130. doi: http://doi.org/10.1016/j.jconrel.2018.01.024
  98. Huang, B.-W., Gao, J.-Q. (2018). Application of 3D cultured multicellular spheroid tumor models in tumor-targeted drug delivery system research. Journal of Controlled Release, 270, 246–259. doi: http://doi.org/10.1016/j.jconrel.2017.12.005
  99. Bahadur, S., Sahu, A. K., Baghel, P., Saha, S. (2019). Current promising treatment strategy for glioblastoma multiform: A review. Oncology Reviews, 13 (2). doi: http://doi.org/10.4081/oncol.2019.417
  100. Tambalo, M., Lodato, S. (2020). Brain organoids: Human 3D models to investigate neuronal circuits assembly, function and dysfunction. Brain Research, 1746, 147028. doi: http://doi.org/10.1016/j.brainres.2020.147028
  101. Li, Y., Chen, T., Miao, X., Yi, X., Wang, X., Zhao, H. et. al. (2017). Zebrafish: A promising in vivo model for assessing the delivery of natural products, fluorescence dyes and drugs across the blood-brain barrier. Pharmacological Research, 125, 246–257. doi: http://doi.org/10.1016/j.phrs.2017.08.017

Downloads

Published

2020-10-31

How to Cite

Bahadur, S., Naurange, T., Baghel, P., Sahu, M., & Yadu, K. (2020). Targeting the brain: various approaches and science involved. ScienceRise: Pharmaceutical Science, (5 (27), 4–16. https://doi.org/10.15587/2519-4852.2020.210824

Issue

Section

Pharmaceutical Science