Targeting the brain: various approaches and science involved
DOI:
https://doi.org/10.15587/2519-4852.2020.210824Ключові слова:
blood brain barrier (BBB), blood cerebrospinal fluid barriers (BCSF) of central nerves system, brain targeted drug deliveryАнотація
The brain targeting drug delivery system is the technique and process to deliver the drug into brain or central nerves system (CNS). The main problem arise during brain targeting in case of several brain related diseases and disorders such as CNS malignancy, brain abscess, multiple sclerosis, schizophrenia etc. selective and limiting permeation nature of barriers i.e. blood brain barrier (BBB) and blood cerebrospinal fluid barrier (BCSF), these two barriers only allow highly lipophilic molecule enters into brain and is one of the greatest clinical impediment of treatment of brain and CNS diseases and disorders. To treated this type of diseases and disorders drugs are targeted into brain and drug must be cross these two barriers they’re by different types of approaches are used to delivered drug molecules.
Aim of research. The main aim of this review paper is to compile all the approaches, strategies and techniques used for brain targeted drug delivery in a single paper/ article.
Material and method. To prepare this manuscript, various keywords were searched in different engines such as Google, Yahoo and Bing etc. The available information in public domain was collected and classified according to brain drug delivery system. This review deals with approaches and current strategies used to enhance the brain targeted drug delivery system. The approaches for brain targeting – invasive, non- invasive and miscellaneous techniques, by using these approaches enhance the drugs delivery and drugs are easily across BBB and BCSF.
Result. The different type of approaches and strategies used to enhance the drug delivery into brain and CNS. All these techniques described in this paper are applied for overcoming the problems that arises during treatment of brain related diseases. This review paper has a list of different types of models (In-vitro and In-vivo) used in study of brain and CNS drug delivery.
Conclusions. Drug delivery to brain for treating a various diseases and disorders are very difficult and challenging because the delivery of drug molecules must be pass through the BBB and BCSF. Overcome this difficulties and challenges certain approaches and technique such as invasive, non-invasive, intranasal delivery of drug, ocular delivery of drug and focused ultrasound technique are used to brain targeting. They are help to penetrate the drug molecule through BBB and CSF very easily and enhance the efficacy of treatment. This review article covered current approaches and strategies of brain targeting drug delivery in past five to ten years. These approaches and strategies are used to the brain delivery of drug, proteins, peptides, amino acids, etc.
Посилання
- Dong, X. (2018). Current Strategies for Brain Drug Delivery. Theranostics, 8 (6), 1481–1493. doi: http://doi.org/10.7150/thno.21254
- Mulvihill, J. J., Cunnane, E. M., Ross, A. M., Duskey, J. T., Tosi, G., Grabrucker, A. M. (2020). Drug delivery across the blood–brain barrier: recent advances in the use of nanocarriers. Nanomedicine, 15 (2), 205–214. doi: http://doi.org/10.2217/nnm-2019-0367
- Bors, L., Erdő, F. (2019). Overcoming the Blood–Brain Barrier. Challenges and Tricks for CNS Drug Delivery. Scientia Pharmaceutica, 87 (1), 6. doi: http://doi.org/10.3390/scipharm87010006
- Saraiva, C., Praça, C., Ferreira, R., Santos, T., Ferreira, L., Bernardino, L. (2016). Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. Journal of Controlled Release, 235, 34–47. doi: http://doi.org/10.1016/j.jconrel.2016.05.044
- Tyagi, A., Sharm, P. K., Malviya, R. (2018). Insignement to Brain Targeting of Drugs. Drug Design Development and Delivery Journal, 1 (1). doi: http://doi.org/10.31021/ddddj.20181105
- Serlin, Y., Shelef, I., Knyazer, B., Friedman, A. (2015). Anatomy and physiology of the blood–brain barrier. Seminars in Cell & Developmental Biology, 38, 2–6. doi: http://doi.org/10.1016/j.semcdb.2015.01.002
- Johanson, C. E., Stopa, E. G., McMillan, P. N. (2010). The Blood–Cerebrospinal Fluid Barrier: Structure and Functional Significance. The Blood-Brain and Other Neural Barriers, 101–131. doi: http://doi.org/10.1007/978-1-60761-938-3_4
- Neves, A. R., Queiroz, J. F., Weksler, B., Romero, I. A., Couraud, P.-O., Reis, S. (2015). Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: two new strategies of functionalization with apolipoprotein E. Nanotechnology, 26 (49), 495103. doi: http://doi.org/10.1088/0957-4484/26/49/495103
- Brahmancar, D. M., Jaiswal, S. B. (2015). Biopharmaceutics and pharmacokinetics a treatise. Delhi, 544.
- Deeksha, D., Malviya, R., Sharma, P. (2014). Brain Targeted Drug Delivery: Factors, Approaches and Patents. Recent Patents on Nanomedicine, 4 (1), 2–14. doi: http://doi.org/10.2174/1877912304666140707184721
- Jones, H. C. (2006). The Blood-Cerebrospinal Fluid Barrier. Edited by: Wei Zheng, Adam Chodobski. Chapman and Hall/CRC, Taylor and Francis Group, Boca Raton, Florida USA; 2005. Cerebrospinal Fluid Research, 3 (1). doi: http://doi.org/10.1186/1743-8454-3-12
- Jadhav, K., Gambhire, M., Shaikh, I., Kadam, V., Pisal, S. (2007). Nasal Drug Delivery System-Factors Affecting and Applications. Current Drug Therapy, 2 (1), 27–38. doi: http://doi.org/10.2174/157488507779422374
- Dhakar, R. C., Maurya, S. D., Tilak, V. K., Gupta, A. K. (2011). A review on factors affecting the design of nasal drug delivery system. International Journal of Drug Delivery, 1 (2), 194–208.
- Sandipan, R. (2012). Strategic Drug Delivery Targeted to the Brain: A Review. Pelagia Research Library, 3 (1), 17.
- Nagpal, K., Singh, S. K., Mishra, D. N. (2013). Drug targeting to brain: a systematic approach to study the factors, parameters and approaches for prediction of permeability of drugs across BBB. Expert Opinion on Drug Delivery, 10 (7), 927–955. doi: http://doi.org/10.1517/17425247.2013.762354
- Thakur, S., Sharma, P. K., Malviya, R. (2017). A Review : Recent Strategies Involved in Brain Targeting Through Ocular Route-Patents and Application. Available at: https://www.semanticscholar.org/paper/A-Review- %3A-Recent-Strategies-Involved-in-Brain-and-Thakur-Sharma/ccc7b427b1f7342a547b5184a960366b192cc3d6
- Varsha, A., Om, B., Kuldeep, R., Bindiya, P., Riddhi, P. (2014). Poles apart inimitability of brain targeted drug delivery system in middle of NDDS. International Journal of Drug Development and Research, 6 (4), 15–27.
- Slavc, I., Cohen-Pfeffer, J. L., Gururangan, S., Krauser, J., Lim, D. A., Maldaun, M. et. al. (2018). Best practices for the use of intracerebroventricular drug delivery devices. Molecular Genetics and Metabolism, 124 (3), 184–188. doi: http://doi.org/10.1016/j.ymgme.2018.05.003
- Atkinson, A. J. (2017). Intracerebroventricular drug administration. Translational and Clinical Pharmacology, 25 (3), 117. doi: http://doi.org/10.12793/tcp.2017.25.3.117
- Mishra, N., Pant, P., Porwal, A., Jaiswal, J., Samad, M. A. S. T. (2016). Targeted drug delivery system : A Review. American Journal of PharmTech Research, 6 (1), 1–24.
- Rhea, E. M., Salameh, T. S., Banks, W. A. (2019). Routes for the delivery of insulin to the central nervous system: A comparative review. Experimental Neurology, 313, 10–15. doi: http://doi.org/10.1016/j.expneurol.2018.11.007
- Zeeshan, M., Mukhtar, M., Ul Ain, Q., Khan, S., Ali, H. (2020). Nanopharmaceuticals: A Boon to the Brain-Targeted Drug Delivery. Pharmaceutical Formulation Design – Recent Practices. doi: http://doi.org/10.5772/intechopen.83040
- Yokel, R. A. (2020). Nanoparticle brain delivery: a guide to verification methods. Nanomedicine, 15 (4), 409–432. doi: http://doi.org/10.2217/nnm-2019-0169
- Shakeri, S., Ashrafizadeh, M., Zarrabi, A., Roghanian, R., Afshar, E. G., Pardakhty, A. et. al. (2020). Multifunctional Polymeric Nanoplatforms for Brain Diseases Diagnosis, Therapy and Theranostics. Biomedicines, 8 (1), 13. doi: http://doi.org/10.3390/biomedicines8010013
- Vassanelli, S. (2011). Brain-Chip Interfaces: The Present and The Future. Procedia Computer Science, 7, 61–64. doi: http://doi.org/10.1016/j.procs.2011.12.020
- Eltorai, A. E. M., Fox, H., McGurrin, E., Guang, S. (2016). Microchips in Medicine: Current and Future Applications. BioMed Research International, 2016, 1–7. doi: http://doi.org/10.1155/2016/1743472
- Patel, M. M., Goyal, B. R., Bhadada, S. V., Bhatt, J. S., Amin, A. F. (2009). Getting into the brain: Approaches to enhance brain drug delivery. CNS Drugs, 23 (1), 35–58. doi: http://doi.org/10.2165/0023210-200923010-00003
- Rodriguez, A., Tatter, S., Debinski, W. (2015). Neurosurgical Techniques for Disruption of the Blood–Brain Barrier for Glioblastoma Treatment. Pharmaceutics, 7 (3), 175–187. doi: http://doi.org/10.3390/pharmaceutics7030175
- Bellavance, M.-A., Blanchette, M., Fortin, D. (2008). Recent Advances in Blood–Brain Barrier Disruption as a CNS Delivery Strategy. The AAPS Journal, 10 (1), 166–177. doi: http://doi.org/10.1208/s12248-008-9018-7
- Neuwelt, E. A., Specht, H. D., Howieson, J. (1983). Osmotic blood-brain barrier modification: Clinical documentation by enhanced CT scanning and/or radionuclide brain scanning. American Journal of Neuroradiology, 4 (4), 907–913.
- Xie, J., Shen, Z., Anraku, Y., Kataoka, K., Chen, X. (2019). Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials, 224, 119491. doi: http://doi.org/10.1016/j.biomaterials.2019.119491
- O’Reilly, M. A., Hynynen, K. (2012). Ultrasound enhanced drug delivery to the brain and central nervous system. International Journal of Hyperthermia, 28 (4), 386–396. doi: http://doi.org/10.3109/02656736.2012.666709
- Meairs, S. (2015). Facilitation of Drug Transport across the Blood–Brain Barrier with Ultrasound and Microbubbles. Pharmaceutics, 7 (3), 275–293. doi: http://doi.org/10.3390/pharmaceutics7030275
- Fang, F., Zou, D., Wang, W., Yin, Y., Yin, T., Hao, S. et. al. (2017). Non-invasive approaches for drug delivery to the brain based on the receptor mediated transport. Materials Science and Engineering: C, 76, 1316–1327. doi: http://doi.org/10.1016/j.msec.2017.02.056
- Pardridge, W. M. (1999). Non-invasive drug delivery to the human brain using endogenous blood–brain barrier transport systems. Pharmaceutical Science & Technology Today, 2 (2), 49–59. doi: http://doi.org/10.1016/s1461-5347(98)00117-5
- Kristensen, M., Brodin, B. (2017). Routes for Drug Translocation Across the Blood-Brain Barrier: Exploiting Peptides as Delivery Vectors. Journal of Pharmaceutical Sciences, 106 (9), 2326–2334. doi: http://doi.org/10.1016/j.xphs.2017.04.080
- Gao, H. (2016). Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharmaceutica Sinica B, 6 (4), 268–286. doi: http://doi.org/10.1016/j.apsb.2016.05.013
- Wong, K., Riaz, M., Xie, Y., Zhang, X., Liu, Q., Chen, H. et. al. (2019). Review of Current Strategies for Delivering Alzheimer’s Disease Drugs across the Blood-Brain Barrier. International Journal of Molecular Sciences, 20 (2), 381. doi: http://doi.org/10.3390/ijms20020381
- Gabathuler, R. (2010). Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiology of Disease, 37 (1), 48–57. doi: http://doi.org/10.1016/j.nbd.2009.07.028
- Nikam, P. M., Gondkar, S. B., Saudagar, R. B. (2015). Brain Targeting Drug Delivery System: A Review. Asian Journal of Research in Pharmaceutical Science, 5 (4), 247. doi: http://doi.org/10.5958/2231-5659.2015.00036.3
- Prokai-Tatrai, K., Szarka, S., Nguyen, V. (2011). “All in the Mind”? Brain-Targeting Chemical Delivery System of 17β-Estradiol (Estredox) Produces Significant Uterotrophic Side Effect. Pharmaceutica Analytica Acta. doi: http://doi.org/10.4172/2153-2435.s7-002
- Rautio, J., Kumpulainen, H., Heimbach, T., Oliyai, R., Oh, D., Järvinen, T., Savolainen, J. (2008). Prodrugs: design and clinical applications. Nature Reviews Drug Discovery, 7 (3), 255–270. doi: http://doi.org/10.1038/nrd2468
- Shirke, S., Shewale, S., Satpute, M. (2015). Prodrug Design : an Overview. International journal of pharmaceutical, chemical and biological sciences, 5 (1), 232–241.
- Lu, C.-T., Zhao, Y.-Z., Wong, H. L., Cai, J., Peng, L., Tian, X.-Q. (2014). Current approaches to enhance CNS delivery of drugs across the brain barriers. International Journal of Nanomedicine, 9 (1), 2241–2257. doi: http://doi.org/10.2147/ijn.s61288
- Samuel, D. S., Mathew, M. G. (2019). Methods of delivering drugs across blood–brain barrier. Drug Invention Today, 12 (1), 170–172.
- Rautio, J., Laine, K., Gynther, M., Savolainen, J. (2008). Prodrug Approaches for CNS Delivery. The AAPS Journal, 10 (1), 92–102. doi: http://doi.org/10.1208/s12248-008-9009-8
- Prokai-Tatrai, K., Prokai, L. (2011). Prodrug Design for Brain Delivery of Small- and Medium-Sized Neuropeptides. Methods in Molecular Biology. Humana Press, 313–336. doi: http://doi.org/10.1007/978-1-61779-310-3_21
- Engineering, C. (2007). Colloidal Drug Carrier Learn more about Colloidal Drug Carrier The artificial cell design: liposomes. Nanoneuroscience and Nanoneu- ropharmacology.
- Garcia-Garcia, E., Andrieux, K., Gil, S., Couvreur, P. (2005). Colloidal carriers and blood–brain barrier (BBB) translocation: A way to deliver drugs to the brain? International Journal of Pharmaceutics, 298 (2), 274–292. doi: http://doi.org/10.1016/j.ijpharm.2005.03.031
- Teleanu, D., Chircov, C., Grumezescu, A., Volceanov, A., Teleanu, R. (2018). Blood-Brain Delivery Methods Using Nanotechnology. Pharmaceutics, 10 (4), 269. doi: http://doi.org/10.3390/pharmaceutics10040269
- Avhad, P. S., Patil, P. B., Jain, N. P., Laware, S. G. (2015). A Review on Different Techniques for Brain Targeting. International Journal of Pharmaceutical Chemistry and Analysis, 2 (3), 143–147.
- Kaur, S., Kaur, P. (2019). Nanoparticles Characterization and Applications: An Overview. Indo Global Journal of Pharmaceutical Sciences, 9 (2), 146–146. doi: http://doi.org/10.35652/igjps.2019.92s44
- Hu, Y., Gaillard, P. J., de Lange, E. C. M., Hammarlund-Udenaes, M. (2019). Targeted brain delivery of methotrexate by glutathione PEGylated liposomes: How can the formulation make a difference? European Journal of Pharmaceutics and Biopharmaceutics, 139, 197–204. doi: http://doi.org/10.1016/j.ejpb.2019.04.004
- Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y. et. al. (2013). Liposome: classification, preparation, and applications. Nanoscale Research Letters, 8 (1). doi: http://doi.org/10.1186/1556-276x-8-102
- Singh, S. B. (2013). Novel Approaches for Brain Drug Delivery System-Review. International Journal of Pharma Research & Review, 2 (26), 36–44.
- Gharbavi, M., Amani, J., Kheiri-Manjili, H., Danafar, H., Sharafi, A. (2018). Niosome: A Promising Nanocarrier for Natural Drug Delivery through Blood-Brain Barrier. Advances in Pharmacological Sciences, 2018, 1–15. doi: http://doi.org/10.1155/2018/6847971
- Madhav, N. V. S., Saini, A. (2011). Niosomes: a Novel Drug Delivery System. International Journal of Research in Pharmacy and Chemistry, 1 (3), 498–511. Available at: http://www.ijrpc.com/files/00035.pdf
- Qumbar, M., Ameeduzzafar, Imam, S. S., Ali, J., Ahmad, J., Ali, A. (2017). Formulation and optimization of lacidipine loaded niosomal gel for transdermal delivery: In-vitro characterization and in-vivo activity. Biomedicine & Pharmacotherapy, 93, 255–266. doi: http://doi.org/10.1016/j.biopha.2017.06.043
- Upadhyay, R. K. (2014). Drug Delivery Systems, CNS Protection, and the Blood Brain Barrier. BioMed Research International, 2014, 1–37. doi: http://doi.org/10.1155/2014/869269
- Strambeanu, N., Demetrovici, L., Dragos, D., Lungu, M. (2014). Nanoparticles: Definition, Classification and General Physical Properties. Nanoparticles’ Promises and Risks. Springer International Publishing, 3–8. doi: http://doi.org/10.1007/978-3-319-11728-7_1
- Sahoo, S. K., Labhasetwar, V. (2003). Nanotech approaches to drug delivery and imaging. Drug Discovery Today, 8 (24), 1112–1120. doi: http://doi.org/10.1016/s1359-6446(03)02903-9
- Surender, V., Deepika, M. (2016). Solid lipid nanoparticles: a comprehensive review. Journal of Chemical and Pharmaceutical Research, 8 (8), 102–114. Available at: http://www.jocpr.com/articles/solid-lipid-nanoparticles-a-comprehensive-review.pdf
- Yadav, N., Khatak, S., Singh Sara, U. V. (2013). Solid lipid nanoparticles- A review. International Journal of Applied Pharmaceutics, 5 (2), 8–18.
- Mutyam Pallerla, S., Prabhakar, B. (2013). A review on solid lipid nanoparticles. International Journal of Pharmaceutical Sciences Review and Research, 20 (2), 196–206.
- Masserini, M. (2013). Nanoparticles for Brain Drug Delivery. ISRN Biochemistry, 2013, 1–18. doi: http://doi.org/10.1155/2013/238428
- Joseph, E., Saha, R. N. (2013). Advances in Brain Targeted Drug Delivery: Nanoparticulate Systems. Journal of PharmaSciTech, 3 (1).
- Bonferoni, M., Rossi, S., Sandri, G., Ferrari, F., Gavini, E., Rassu, G., Giunchedi, P. (2019). Nanoemulsions for “Nose-to-Brain” Drug Delivery. Pharmaceutics, 11 (2), 84. doi: http://doi.org/10.3390/pharmaceutics11020084
- Pagar, K. R., Darekar, A. B. (2019). Nanoemulsion: A new concept of Delivery System. Asian Journal of Research in Pharmaceutical Science, 9 (1), 39. doi: http://doi.org/10.5958/2231-5659.2019.00006.7
- Chatterjee, B., Gorain, B., Mohananaidu, K., Sengupta, P., Mandal, U. K., Choudhury, H. (2019). Targeted drug delivery to the brain via intranasal nanoemulsion: Available proof of concept and existing challenges. International Journal of Pharmaceutics, 565, 258–268. doi: http://doi.org/10.1016/j.ijpharm.2019.05.032
- Pardeshi, C. V., Belgamwar, V. S. (2018). N,N,N‑trimethyl chitosan modified flaxseed oil based mucoadhesive neuronanoemulsions for direct nose to brain drug delivery. International Journal of Biological Macromolecules, 120, 2560–2571. doi: http://doi.org/10.1016/j.ijbiomac.2018.09.032
- Gurpreet, K., Singh, S. K. (2018). Review of nanoemulsion formulation and characterization techniques. Indian Journal of Pharmaceutical Sciences, 80 (5), 781–789. doi: http://doi.org/10.4172/pharmaceutical-sciences.1000422
- L. Shinde, R., B. Jindal, A., V. Devarajan, P. (2011). Microemulsions and Nanoemulsions for Targeted Drug Delivery to the Brain. Current Nanoscience, 7 (1), 119–133. doi: http://doi.org/10.2174/157341311794480282
- Shinde, R. L., Bharkad, G. P., Devarajan, P. V. (2015). Intranasal microemulsion for targeted nose to brain delivery in neurocysticercosis: Role of docosahexaenoic acid. European Journal of Pharmaceutics and Biopharmaceutics, 96, 363–379. doi: http://doi.org/10.1016/j.ejpb.2015.08.008
- Jaiswal, P. L., Darekar, A. B., Saudagar, R. B. (2017). A recent review on nasal microemulsion for treatment of cns disorder. International Journal of Current Pharmaceutical Research, 9 (4), 5. doi: http://doi.org/10.22159/ijcpr.2017v9i4.20963
- Nayak, A. K., Dey, S., Pal, K., Banerjee, I. (2019). Iontophoretic drug delivery systems. Bioelectronics and Medical Devices. Elsevier, 393–420. doi: http://doi.org/10.1016/b978-0-08-102420-1.00022-4
- Sharma, K. (2017). Recent advancement in drug delivery system for brain: An overview. World Journal of Pharmacy and Pharmaceutical Sciences, 292–305. doi: http://doi.org/10.20959/wjpps20177-9454
- Dixit, N., Bali, V., Baboota, S., Ahuja, A., Ali, J. (2007). Iontophoresis – An Approach for Controlled Drug Delivery: A Review. Current Drug Delivery, 4 (1), 1–10. doi: http://doi.org/10.2174/1567201810704010001
- Green, P. G. (1996). Iontophoretic delivery of peptide drugs. Journal of Controlled Release, 41 (1-2), 33–48. doi: http://doi.org/10.1016/0168-3659(96)01354-5
- Chen, H., Yang, G. Z. X., Getachew, H., Acosta, C., Sierra Sánchez, C., Konofagou, E. E. (2016). Focused ultrasound-enhanced intranasal brain delivery of brain-derived neurotrophic factor. Scientific Reports, 6 (1). doi: http://doi.org/10.1038/srep28599
- Klibanov, A. L., McDannold, N. J. (2019). Moving toward Noninvasive, Focused Ultrasound Therapeutic Delivery of Drugs in the Brain: Prolonged Opening of Blood-Brain Barrier May Not Be Needed. Radiology, 291 (2), 467–468. doi: http://doi.org/10.1148/radiol.2019190410
- Hynynen, K., Clement, G. (2007). Clinical applications of focused ultrasound – The brain. International Journal of Hyperthermia, 23 (2), 193–202. doi: http://doi.org/10.1080/02656730701200094
- Burgess, A., Hynynen, K. (2013). Noninvasive and Targeted Drug Delivery to the Brain Using Focused Ultrasound. ACS Chemical Neuroscience, 4 (4), 519–526. doi: http://doi.org/10.1021/cn300191b
- Erdő, F., Bors, L. A., Farkas, D., Bajza, Á., Gizurarson, S. (2018). Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Research Bulletin, 143, 155–170. doi: http://doi.org/10.1016/j.brainresbull.2018.10.009
- Vyas, T., Shahiwala, A., Marathe, S., Misra, A. (2005). Intranasal Drug Delivery for Brain Targeting. Current Drug Delivery, 2 (2), 165–175. doi: http://doi.org/10.2174/1567201053586047
- Lobaina Mato, Y. (2019). Nasal route for vaccine and drug delivery: Features and current opportunities. International Journal of Pharmaceutics, 572, 118813. doi: http://doi.org/10.1016/j.ijpharm.2019.118813
- Wang, Z., Xiong, G., Tsang, W. C., Schätzlein, A. G., Uchegbu, I. F. (2019). Nose-to-Brain Delivery. Journal of Pharmacology and Experimental Therapeutics, 370 (3), 593–601. doi: http://doi.org/10.1124/jpet.119.258152
- Algin-Yapar, E. (2014). Nasal Inserts for Drug Delivery: An Overview. Tropical Journal of Pharmaceutical Research, 13 (3), 459. doi: http://doi.org/10.4314/tjpr.v13i3.22
- Djupesland, P. G. (2012). Nasal drug delivery devices: characteristics and performance in a clinical perspective – a review. Drug Delivery and Translational Research, 3 (1), 42–62. doi: http://doi.org/10.1007/s13346-012-0108-9
- Nezhat, C. R., Nezhat, F. R., Metzger, D. A., Luciano, A. A. (1990). Adhesion reformation after reproductive surgery by videolaseroscopy. Fertility and Sterility, 53 (6), 1008–1011. doi: http://doi.org/10.1016/s0015-0282(16)53576-6
- Marx, D., Williams, G., Birkhoff, M. (2015). Intranasal Drug Administration – An Attractive Delivery Route for Some Drugs. Drug Discovery and Development – From Molecules to Medicine. doi: http://doi.org/10.5772/59468
- Khan, A. R., Liu, M., Khan, M. W., Zhai, G. (2017). Progress in brain targeting drug delivery system by nasal route. Journal of Controlled Release, 268, 364–389. doi: http://doi.org/10.1016/j.jconrel.2017.09.001
- Sabir, F., Ismail, R., Csoka, I. (2020). Nose-to-brain delivery of antiglioblastoma drugs embedded into lipid nanocarrier systems: status quo and outlook. Drug Discovery Today, 25 (1), 185–194. doi: http://doi.org/10.1016/j.drudis.2019.10.005
- Patel, A., Surti, N., Mahajan, A. (2019). Intranasal drug delivery: Novel delivery route for effective management of neurological disorders. Journal of Drug Delivery Science and Technology, 52, 130–137. doi: http://doi.org/10.1016/j.jddst.2019.04.017
- Crowe, T. P., Greenlee, M. H. W., Kanthasamy, A. G., Hsu, W. H. (2018). Mechanism of intranasal drug delivery directly to the brain. Life Sciences, 195, 44–52. doi: http://doi.org/10.1016/j.lfs.2017.12.025
- Bourganis, V., Kammona, O., Alexopoulos, A., Kiparissides, C. (2018). Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. European Journal of Pharmaceutics and Biopharmaceutics, 128, 337–362. doi: http://doi.org/10.1016/j.ejpb.2018.05.009
- Costa, C., Moreira, J. N., Amaral, M. H., Sousa Lobo, J. M., Silva, A. C. (2019). Nose-to-brain delivery of lipid-based nanosystems for epileptic seizures and anxiety crisis. Journal of Controlled Release, 295, 187–200. doi: http://doi.org/10.1016/j.jconrel.2018.12.049
- Modarres, H. P., Janmaleki, M., Novin, M., Saliba, J., El-Hajj, F., RezayatiCharan, M. et. al. (2018). In vitro models and systems for evaluating the dynamics of drug delivery to the healthy and diseased brain. Journal of Controlled Release, 273, 108–130. doi: http://doi.org/10.1016/j.jconrel.2018.01.024
- Huang, B.-W., Gao, J.-Q. (2018). Application of 3D cultured multicellular spheroid tumor models in tumor-targeted drug delivery system research. Journal of Controlled Release, 270, 246–259. doi: http://doi.org/10.1016/j.jconrel.2017.12.005
- Bahadur, S., Sahu, A. K., Baghel, P., Saha, S. (2019). Current promising treatment strategy for glioblastoma multiform: A review. Oncology Reviews, 13 (2). doi: http://doi.org/10.4081/oncol.2019.417
- Tambalo, M., Lodato, S. (2020). Brain organoids: Human 3D models to investigate neuronal circuits assembly, function and dysfunction. Brain Research, 1746, 147028. doi: http://doi.org/10.1016/j.brainres.2020.147028
- Li, Y., Chen, T., Miao, X., Yi, X., Wang, X., Zhao, H. et. al. (2017). Zebrafish: A promising in vivo model for assessing the delivery of natural products, fluorescence dyes and drugs across the blood-brain barrier. Pharmacological Research, 125, 246–257. doi: http://doi.org/10.1016/j.phrs.2017.08.017
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Sanjib Bahadur, Tripti Naurange, Pragya Baghel, Manisha Sahu, Kamesh Yadu
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Наше видання використовує положення про авторські права Creative Commons CC BY для журналів відкритого доступу.